TY - THES A1 - Ünzelmann, Maximilian T1 - Interplay of Inversion Symmetry Breaking and Spin-Orbit Coupling – From the Rashba Effect to Weyl Semimetals T1 - Zusammenspiel aus Inversionssymmetriebruch und Spin-Bahn-Kopplung – Vom Rashba-Effekt zu Weyl-Halbmetallen N2 - Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations. Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs. N2 - Wird die Inversionssymmetrie kristalliner Festkörper gebrochen, ermöglicht dies die Ausbildung von spinpolarisierten elektronischen Zuständen durch Spin-Bahn-Kopplung ohne die Notwendigkeit von Magnetismus. In den vergangenen Jahren wurde eine Vielzahl interessanter physikalischer Phänomene diskutiert, die mit diesem Effekt zusammenhängen, darunter der Rashba-Effekt, topologische Isolatoren sowie Weyl-Halbmetalle. In dieser Arbeit wird das Zusammenspiel von Inversionssymetriebruch und Spin-Bahn-Kopplung sowie insbesondere deren Einfluss auf die Eigenschaften der elektronischen Zustände, also auf die Spin- und Orbital-Freiheitsgrade, experimentell untersucht. Zwei verschiedene Arten geeigneter Modellsysteme werden dazu betrachtet: zweidimensionale Oberflächenzustände, in denen der Rashba-Effekt aufgrund der an der Oberfläche inhärent gebrochenen Inverisonssymetrie auftritt, und ein Weyl-Halbmetall, dessen dreidimensionale Kristallstruktur kein Inversionszentrum besitzt. Winkelaufgelöste Photoelektronenspektroskopie bietet einen impulsaufgelösten Zugang zur Spinpolarisation sowie zur orbitalen Zusammensetzung der elektronischen Zustände mittels Photoelektronenspindetektion und Dichroismus mit polarisiertem Licht. Die in dieser Arbeit gezeigten experimentellen Ergebnisse werden außerdem durch ab-initio Dichtefunktionaltheorierechnungen sowie einfachen Modellbetrachtungen ergänzt und untermauert. Insgesamt zeigt sich, dass das Brechen von Inversionssymmetrie einen entscheidenden Einfluss auf die Bloch-Wellenfunktion hat, nämlich die Ausbildung eines orbitalen Bahndrehimpulses. Dieser Mechanismus ist wiederum von grundlegender Bedeutung sowohl für die Physik des Oberflächen- Rashba-Effekts als auch für die Topologie desWeyl-Halbmetalls TaAs. KW - Rashba-Effekt KW - Inversion Symmetry Breaking KW - Topologie KW - ARPES KW - Spin-Orbit Coupling KW - Orbital Angular Momentum Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283104 ER - TY - THES A1 - Zusan, Andreas T1 - The Effect of Morphology on the Photocurrent Generation in Organic Solar Cells T1 - Der Einfluss der Morphologie auf die Generierung von Photostrom in organischen Solarzellen N2 - Organic solar cells have great potential to become a low-cost and clean alternative to conventional photovoltaic technologies based on the inorganic bulk material silicon. As a highly promising concept in the field of organic photovoltaics, bulk heterojunction (BHJ) solar cells consist of a mixture of an electron donating and an electron withdrawing component. Their degree of intermixing crucially affects the generation of photocurrent. In this work, the effect of an altered blend morphology on polaron pair dissociation, charge carrier transport, and nongeminate recombination is analyzed by the charge extraction techniques time delayed collection field (TDCF) and open circuit corrected transient charge extraction (OTRACE). Different comparative studies cover a broad range of material systems, including polymer and small-molecule donors in combination with different fullerene acceptors. The field dependence of polaron pair dissociation is analyzed in blends based on the polymer pBTTT-C16, allowing a systematic tuning of the blend morphology by varying the acceptor type and fraction. The effect of both excess photon energy and intercalated phases are minor compared to the influence of excess fullerene, which reduces the field dependence of photogeneration. The study demonstrates that the presence of neat fullerene domains is the major driving force for efficient polaron pair dissociation that is linked to the delocalization of charge carriers. Furthermore, the influence of the processing additive diiodooctane (DIO) is analyzed using the photovoltaic blends PBDTTT-C:PC71BM and PTB7:PC71BM. The study reveals amulti-tiered alteration of the blend morphology of PBDTTT-C based blends upon a systematic increase of the amount of DIO. Domains on the hundred nanometers length scale in the DIO-free blend are identified as neat fullerene agglomerates embedded in an intermixed matrix. With the addition of the additive, 0.6% and 1% DIO already substantially reduces the size of these domains until reaching the optimum 3% DIO mixture, where a 7.1% power conversion efficiency is obtained. It is brought into connection with the formation of interpenetrating polymer and fullerene phases. Similar to PBDTTT-C, the morphology of DIO-free PTB7:PC71BM blends is characterized by large fullerene domains being decreased in size upon the addition of 3% DIO. OTRACE measurements reveal a reduced Langevin-type, super-second order recombination in both blends. It is demonstrated that the deviation from bimolecular recombination kinetics cannot be fully attributed to the carrier density dependence of the mobility but is rather related to trapping in segregated PC71BM domains. Finally, with regard to small-molecule donors, a higher yield of photogeneration and balanced transport properties are identified as the dominant factors enhancing the efficiency of vacuum deposited MD376:C60 relative to its solution processed counterpart MD376:PC61BM. The finding is explained by a higher degree of dimerization of the merocyanine dye MD376 and a stronger donor-acceptor interaction at the interface in the case of the vacuum deposited blend. N2 - Organische Solarzellen sind dank der Möglichkeit einer preisgünstigen und umweltfreundlichen Herstellung eine erfolgversprechende Alternative zu konventionellen Photovoltaiktechnologien, bei denen heutzutage hauptsächlich Silizium zum Einsatz kommt. Ein aussichtsreiches Konzept ist dabei die Heterogemisch (bulk heterojunction , BHJ)-Solarzelle. Deren aktive Schicht besteht aus einer Elektron-gebenden und einer Elektron-entziehenden Komponente, wobei die Generierung von Photostrom entscheidend von der Durchmischung beider Materialien abhängt. Dieser Einfluss der Morphologie auf die Trennung von Polaronpaaren, den Transport von freien Ladungsträgern und deren nichtgeminale Rekombination wird durch die Verwendung der Ladungsextraktionsmethoden time delayed collection field (TDCF) sowie open circuit corrected transient charge extraction (OTRACE) in dieser Arbeit im Detail untersucht. Die vorgestellten Studien umfassen mit Polymeren und kleinen Molekülen als Donatoren sowie verschiedenen Fulleren-Akzeptoren unterschiedlichste Materialsysteme. Der erste Teil der Arbeit befasst sich mit der feldabhängigen Trennung von Polaronpaaren in Solarzellen, die unter Verwendung des Polymers pBTTT-C16 hergestellt werden. Das Materialsystem erlaubt eine systematische Anpassung der Morphologie durch Art und Anteil des Akzeptors. Die Untersuchungen zeigen, dass sowohl Überschussenergie als auch interkalierte Phasen lediglich eine geringe Auswirkung auf die Photogenerierung haben, diese jedoch stark von der Fullerenmenge im Gemisch beeinflusst wird. Das Ergebnis verdeutlicht, dass reine Fullerendomänen die treibende Kraft für eine effiziente Trennung von Polaronpaaren sind, was mit der Delokalisierung von Ladungsträgern verknüpft wird. Im zweiten Teil wird der Einfluss des Additivs Diiodooktan (DIO) auf das Materialsystem PBDTTT-C:PC71BM untersucht. Die Studie zeigt eine mehrstufige Änderung der Morphologie bei einer schrittweisen Erhöhung der verwendeten DIO Menge. Wird das Heterogemisch PBDTTT-C:PC71BM ohne DIO hergestellt, ist dessen Nanostruktur durch große Agglomerate geprägt, die als reine Fullerendomänen identifiziert werden. Bereits die Verwendung von 0.6% und 1% DIO führt zu einer deutlichen Verkleinerung dieser Domänen, wobei erst die maximale Effizienz der mit 3% DIO hergestellten Solarzelle mit der Ausbildung von vernetzten Polymer- und Fullerenphasen in Verbindung gebracht wird. Vergleichbar zu PBDTTT-C weist auch PTB7:PC71BM große Fullerendomänen und deren bessere Dispersion durch die Verwendung von 3% DIO auf. In beiden Fällen zeigt OTRACE eine reduzierte Langevin-artige Rekombination sowie die Abweichung von einem bimolekularen Verhalten. Da diese erhöhte Rekombinationsordnung nicht mit der Ladungsträgerdichtenabhängigkeit der Mobilität erklärt werden kann, wird sie dem Einfangen von Ladungsträgern in Fullerendomänen zugeordnet. Im letzten Teil wird gezeigt, dass eine ergiebigere Photogenerierung sowie ausgeglichene Transporteigenschaften eine erhöhte Bauteileffizienz von aufgedampften MD376:C60 Solarzellen im Vergleich zum flüssigprozessierten Pendant MD376:PC61BM bedingen. Die Beobachtung wird mit einer verbesserten Dimerisation des Merocyanins MD376 und einer stärkeren Donator-Akzeptor-Wechselwirkung an der Grenzfläche erklärt. KW - Organische Solarzelle KW - Photostrom KW - Ladungsträgergenerierung KW - geminale Rekombination KW - nichtgeminale Rekombination KW - Elektronentransport KW - Photovoltaik KW - Rekombination Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117852 ER - TY - THES A1 - Zipf, Matthias T1 - Berührungslose Temperaturmessung an Gasen und keramisch beschichteten Oberflächen bei hohen Temperaturen T1 - Non-contact temperature measurement of gases and ceramic coated surfaces N2 - Stationäre Gasturbinen können von großer Bedeutung für die Verlangsamung des Klima-wandels und bei der Bewältigung der Energiewende sein. Für die Weiterentwicklung von Gasturbinen zu höheren Betriebstemperaturen und damit einhergehend zu höheren Wirkungs-graden werden berührungslose Messverfahren zur Ermittlung der Oberflächentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase während des Be-triebs benötigt. Im Rahmen dieser Arbeit werden daher Methoden der berührungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die berührungslose Messung der Oberflächentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberflächeneigenschaften im Wellenlängenbereich des mitt-leren Infrarots durchgeführt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines adäquaten Strahlungsthermometers für diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Drücken in einer ei-gens hierfür konstruierten Heißgas-Messzelle zunächst Wellenlängenbereiche identifiziert, in welchen die geplanten Messungen möglich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei mögliche Verfahren zur berührungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabhängigkeit des spektralen Transmissionsgrades in den Randbereichen von gesättigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen für dieses Tempera-turmessverfahren durchgeführt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Drücken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K für das geplante Verfahren nutzbare Wellenlängenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur berührungslosen Gastem-peraturmessung basiert auf der Temperaturabhängigkeit der Wellenlängenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Phänomen anhand von experimentell bestimmten hochaufgelösten Transmissions-spektren von Kohlenstoffdioxid überprüft. Weiterhin wurden mögliche Wellenlängenbereiche identifiziert und hinsichtlich ihrer Eignung für das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdrücken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-über hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden. N2 - Stationary gas turbines can be of significant importance for slowing down climate change and for the handling of the energy transition. The goal of the further development of gas tur-bines is to increase the operating temperatures and in consequence the efficiency factor. For this purpose, non-contact measurement methods are required to determine the surface temper-ature of turbine blades and the gas temperature of the hot combustion gases during operation. Therefore, methods of non-contact temperature measurement using infrared radiation are in-vestigated in this work. Due to the infrared-optical surface properties of modern turbine blades, non-contact tem-perature measurement has to be carried out in the mid-infrared wavelength range, where com-bustion gases of gas turbines have strong absorption bands. In order to develop an adequate radiation thermometer for this purpose, as a first step in this work, wavelength ranges were identified by determining the transmission spectra of carbon dioxide and water vapor at high temperatures and pressures in which the planned measurements are possible. Therefore, a spe-cial high-temperature high-pressure gas cell was developed. Then the prototype of a radiation thermometer, which was configured for measurements in the wavelength region identified before, was successfully tested in a full-scale gas turbine. Furthermore, two possible methods for non-contact gas temperature measurement were in-vestigated in the scope of this work. The first method examined also relies on radiation ther-mometry. Within this method, it is planned to obtain the gas temperature from the measure-ment of the spectral radiance that is transmitted in the wavelength region of the edge of a sat-urated absorption band of the gas, due to the temperature dependence of the spectral transmit-tance in this wavelength region. In this work, preliminary investigations for this temperature measurement method were carried out. Based on experimentally determined transmission spectra of carbon dioxide at pressures between 5 kPa and 600 kPa and at temperatures be-tween room temperature and 1073 K, wavelength intervals were identified that are suitable for the planned measurement method. Especially in the region of the carbon dioxide band at 4.26 µm, appropriate intervals could be found. The second method for non-contact gas temperature measurement investigated in this the-sis is based on the temperature dependence of the wavelength position of the transmission minima of the absorption bands of infrared-active gases. Therefore, this phenomenon was in-vestigated using experimentally determined high-resolution transmission spectra of carbon dioxide. Furthermore, suitable wavelength ranges with appropriate absorption bands were identified and characterized. The most promising sub-bands were found in the wavelength regions around 2.7 µm and 9.2 µm. Under addition of nitrogen with partial pressures up to 390 kPa, the carbon dioxide band at 4.26 µm also turned out to be suitable for the planned temperature measurement method. Finally, the experimentally gathered transmission spectra, which were obtained in the scope of this work, could be verified by a comparison with corresponding HITRAN-simulations. KW - Pyrometrie KW - Gas KW - thermal barrier coating Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240248 ER - TY - THES A1 - Zinner, Martin Gerhard T1 - Adsorbat-induzierte Oberflächensysteme und ultra-dünne intermetallische Legierungsfilme im Fokus der niederenergetischen Elektronenbeugung und spektroskopischer Analysemethoden T1 - Adsorbate-unduced surface systems and ultra-thin intermetallic alloy films in the focus of low-energy electron diffraction and spectroscopic analysis methods N2 - Im Rahmen der vorliegenden Dissertation werden mit unterschiedlichen Analysemethoden die Korrelationen zwischen den strukturellen, elektronischen und magnetischen Eigenschaften von Selten Erd-basierten intermetallischen Oberflächenlegierungen anhand der beiden Probensysteme LaPt$_5$/Pt(111) und CePt$_5$/Pt(111) untersucht. Darüber hinaus werden die strukturellen Eigenschaften von Adsorbat-induzierten Oberflächenrekonstruktionen im sub-ML Bereich in reduzierten Dimensionen auf der Halbleiteroberfläche Si(111) anhand der beiden Materialsysteme Si(111)-(5$\times$2)-Au und Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn mit der Methode LEED-IV analysiert. Das erste experimentelle Kapitel dieser Arbeit behandelt die intermetallische Oberflächenlegierung LaPt$_5$/Pt(111), die sich ausbildet wenn La-Atome auf einem sauberen Pt(111)-Substrat abgeschieden werden und anschließend thermische Energie hinzugefügt wird. Die Dicke der gebildeten Legierung lässt sich über die zuvor angebotene Menge an La-Atomen variieren und resultiert aufgrund der Gitterfehlanpassung von Pt(111) und den obenauf liegenden LaPt$_5$-Filmen in sechs unterschiedliche Beugungsmuster im LEED, deren Überstrukturvektoren durch zwei unterschiedliche Rotationsausrichtungen in Bezug auf das Gitter des Substrats und unterschiedlichen lateralen Gitterkonstanten der Filme gekennzeichnet sind. Die atomare Struktur kann auf eine gemeinsame Kristallstruktur zurückgeführt werden, deren Stöchiometrie aus dickenabhängigen AES-Messungen zu LaPt$_5$ mit einer Pt-reichen Oberflächenabschlusslage bestimmt werden konnte. Die Ergebnisse einer durchgeführten LEED-IV Studie bestätigen das Wachstum der Filme in der CaCu$_5$-Struktur, wobei die Oberflächenterminierungslage im Vergleich zum Volumengitter ein zusätzliches Pt-Atom pro Einheitszelle aufweist, das zusätzlich um einen Wert von \unit{0.26}{\angstrom} aus der Oberfläche hervorsteht. Die La-Atome, die direkt unterhalb der Terminierungslage liegen, erfahren eine Verschiebung in entgegengesetzter Richtung, so dass im Vergleich zum Volumen der Filme eine lokal veränderte Symmetrie im oberflächennahen Bereich vorherrscht und sich auf die elektronischen Eigenschaften der LaPt$_5$-Filme auswirkt. Darüber hinaus wurden die Schwingungseigenschaften der LaPt$_5$-Filme mittels der polarisierten in situ Raman-Spektroskopie bestimmt, bei der die auftretenden Schwingungspeaks durch die Kenntnis der atomaren Struktur und mit Überlegungen aus der Gruppentheorie unterschiedlichen Tiefenbereichen der LaPt$_5$-Filme (Volumen und Oberfläche) zugewiesen werden konnten. Im zweiten experimentellen Kapitel liegt der Fokus auf der atomaren Struktur sowie auf den elektronischen und magnetischen Eigenschaften des Kondo- und Schwerfermionensystems CePt$_5$/Pt(111). In Abhängigkeit von der vor dem Legierungsprozess angebotenen Menge an Ce-Atomen auf dem Pt(111)-Substrat konnten insgesamt sieben verschiedene LEED-Phasen der CePt$_5$-Filme identifiziert werden, deren jeweilige Oberflächenrekonstruktionen durch eine unterschiedliche Rotationsausrichtung in Bezug auf das Pt(111)-Substrat gekennzeichnet sind. Zusätzlich ist die laterale Gitterkonstante einem Prozess aus Verspannung und Dehnung aufgrund der Gitterfehlanpassung von Film und Substrat ausgesetzt. Eine durchgeführte LEED-IV Analyse bestätigt das Wachstum der Filme in der CaCu$_5$-Struktur mit einer Pt-reichen Oberflächenabschlusslage, deren Pt$_3$-Kagom\'{e}-Lage im Vergleich zum Volumengitter mit einem zusätzlichen Pt-Atom pro Einheitszelle gefüllt ist. Die strukturellen Ergebnisse stimmen mit erzielten Resultaten aus früheren Arbeiten überein und verdeutlichen zudem die isostrukturellen Eigenschaften zur intermetallischen Oberflächenlegierung LaPt$_5$/Pt(111). Dies ermöglicht durch geeignete Vergleichsexperimente an LaPt$_5$/Pt(111) die induzierten Phänomene der $4f$-Elektronen bezüglich des Kondo- und Schwerfermionenverhaltens bei CePt$_5$/Pt(111) zu bestimmen, da La-Atome in ihrem atomaren Aufbau keine $4f$-Elektronen beherbergen. Mit der polarisierten in situ Raman-Spektroskopie aufgenommene Spektren anhand von unterschiedlich dicken CePt$_5$-Filmen beinhalten sowohl charakteristische Schwingungspeaks als auch elektronische Übergänge. Das spektroskopische Verhalten der Schwingungspeaks zeigt dabei nicht nur Gemeinsamkeiten zu LaPt$_5$/Pt(111) bei der Zuweisung der Schwingungsmoden zu den jeweiligen Tiefenbereichen in den CePt$_5$-Filmen, sondern es treten auch Unterschiede auf, da eine CePt$_5$-Schwingungsmode einem anormalen Temperaturverhalten unterliegt, das auf die Wechselwirkung mit den $4f$-Elektronen zurückzuführen ist. Weitere spezifische Raman-Signaturen, die elektronischen Übergängen in Form von Kristallfeldniveauaufspaltungen der $4f$-Elektronen von Ce zugewiesen werden konnten, resultieren ebenfalls aus unterschiedlichen Regionen der CePt$_5$-Filme (Oberfläche, inneres Volumen, Interface). Die magnetischen Eigenschaften der CePt$_5$-Filme wurden mit XAS und XMCD an den Ce M$_{4,5}$-Kanten in Abhängigkeit von der Temperatur, dem Einfallswinkel, der Filmdicke und der Stärke des Magnetfelds analysiert. Die markanten Übergänge zwischen unterschiedlichen Curie-Weiss-Regimen in der inversen Suszeptibilität erlauben Rückschlüsse über das Kristallfeldaufspaltungsschema, die Kondo- und die RKKY-Wechselwirkung und korrelieren mit der Ce-Valenz. Zudem konnte bei tiefen Temperaturen ein Übergang in den kohärenten Schwerfermionen-Zustand für alle untersuchten CePt$_5$-Filmdicken in dieser Arbeit nachgewiesen werden. Durch die Vorhersage eines metamagnetischen Lifshitz-Übergangs für diese Filme, der sich in der Magnetfeldabhängigkeit des magnetischen Moments äußert, konnte durch die Aufnahme von Magnetisierungskurven bei tiefen Temperaturen und hohen Magnetfeldern auf zwei weitere charakteristische Energieskalen der renormalisierten Bandstruktur zugegriffen werden. Das dritte experimentelle Kapitel widmet sich der mit LEED und LEED-IV durchgeführten Aufklärung der atomaren Struktur eines quasi-eindimensionalen Elektronensystems, bei dem sich die gebildeten Au-Nanodrähte auf der Si(111)-Oberfläche durch eine Si(111)-(5$\times$2)-Au Rekonstruktion beschreiben lassen. Die aufgenommenen LEED-Bilder mit ihren markanten Beugungsreflexen und sogenannten Streifen deuten auf drei gleichwertige Rotationsdomänen, die jeweils um einen Winkel von \unit{120}{\degree} gegeneinander gedreht sind, auf der Oberfläche hin. Zudem konnte aus einer Simulation der Beugungsbilder das Auftreten von Streifen durch drei zusätzliche Spiegeldomänen, die eine Phasenverschiebung von einem halben Überstrukturvektor einführen und bei einer sorgfältigen LEED-IV Analyse ebenfalls berücksichtigt werden sollten, erklärt werden. Aus den in der Literatur nach einer zweiten Rekalibrierung der nötigen Menge an Au-Atomen zur Ausbildung der Si(111)-(5$\times$2)-Au Rekonstruktion in den letzten Jahren heftig diskutierten Strukturmodellen gibt das von Kwon und Kang aufgestellte Geometriemodell (KK-Modell) die beobachteten energieabhängigen Intensitätsmodulationen in den experimentellen Daten beim Vergleich mit theoretisch berechneten IV-Kurven am besten wieder. Für dieses Modell nimmt der R-Faktor nach Pendry bei den unabhängig voneinander betrachteten drei Energieserien unter verschiedenen Einfallswinkeln der Elektronen auf die Probenoberfläche stets den kleinsten Wert an. Unter der expliziten Berücksichtigung von Si-Adatomen, die sich zusätzlich auf der Oberfläche befinden und in einer (5$\times$4)-Einheitszelle beschrieben werden können, bleibt das KK-Modell das zu präferierende Strukturmodell zur Beschreibung der ausgebildeten Au-Ketten und der Si-Honigwabenstruktur bei der Si(111)-(5$\times$2)-Au Oberflächenrekonstruktion. Im letzten experimentellen Kapitel wird ein zweidimensionales Elektronensystem -- die $\alpha$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn Oberflächenrekonstruktion, die sich bei 1/3 ML an Sn-Adsorbaten auf dem Si(111)-Substrat ausbildet -- im Hinblick auf die atomare Struktur bei Raumtemperatur mit LEED und LEED-IV untersucht. Aus den insgesamt sechs in die Analyse aufgenommenen Strukturmodellen, bei denen die Sn-Atome innerhalb der rekonstruierten ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Einheitszelle unterschiedliche Adsorptionsplätze auf einer ideal terminierten Si(111)-Oberfläche einnehmen, konnte ein Legierungsverhalten, wie es bei der $\gamma$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn Phase auftritt, ausgeschlossen werden. Die Sn-Atome ordnen sich ausschließlich auf der Oberfläche neu an und führen zu einer Relaxation des darunterliegenden Substrats, deren atomare Verschiebungen sich bis in die sechste Si-Lage nachverfolgen lassen. Im Vergleich zu früheren Strukturaufklärungen an diesem Materialsystem bestätigt diese Analyse, dass sich die abgeschiedenen Sn-Atome auf T$_4$-Adsorptionsplätzen energetisch günstig anlagern, wobei die bei drei unterschiedlichen Einfallswinkeln aufgenommenen experimentellen Daten an unterschiedlichen Probenpositionen auf ein vorhandenes bzw. fehlendes Si-Atom auf einem S$_5$-Gitterplatz im darunterliegenden Si(111)-Substrat hindeuten. Außerdem konnte das theoretisch vorhergesagte dynamische Fluktuations-Modell aufgrund der sehr stark erhöhten thermischen Auslenkungen der Sn-Atome aus ihrer Gleichgewichtslage in den Modellrechnungen zur dynamischen Streutheorie nachgewiesen werden. Dies könnte neben den unregelmäßig angeordneten Si-Fehlstellen eine Ursache für das Ausbleiben des strukturell reversiblen Phasenübergangs von einer ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Phase zu einer (3$\times$3)-Phase bei tiefen Temperaturen, wie er beispielsweise beim elektronisch vergleichbaren Adsorbatsystem Ge(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn auftritt, sein. N2 - In the scope of the present PhD thesis the correlations between the structural, electronic, and magnetic properties of rare earth-based intermetallic surface compounds are examined by means of different analysis methods on the basis of the two sample systems LaPt$_5$/Pt(111) and CePt$_5$/Pt(111). In addition, the structural properties of adsorbate-induced surface reconstructions in the sub-ML range in reduced dimensions on the semiconductor surface Si(111) are analyzed on the basis of the two material systems Si(111)-(5$\times$2)-Au and Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn with LEED-IV. The first experimental chapter of this thesis deals with the intermetallic surface compound LaPt$_5$/Pt(111). LaPt$_5$/Pt(111) forms when La atoms are deposited onto a clean Pt(111) substrate and subsequently thermal energy is applied. The thickness of the intermetallic film can be varied over the amount of La atoms offered before the alloying process and results in a total of six different diffraction patterns in LEED due to the lattice mismatch of Pt(111) and the LaPt$_5$ films on top. The superstructure vectors of the films formed are characterized by two different rotational orientations with respect to the lattice of the substrate and different lateral lattice constants of the films. The atomic structure can be traced back to a common crystal structure whose stoichiometry could be determined out of thickness dependent AES measurements to LaPt$_5$ with a Pt-rich surface termination layer. The results of a LEED-IV study confirm the growth of the films in the CaCu$_5$ structure, where the surface termination layer contains an additional Pt atom per unit cell compared to the bulk lattice. Additionally, this Pt atom protrudes from the surface by a value of \unit{0.26}{\angstrom}. The La atoms directly underneath the termination layer are shifted in opposite direction and therefore a locally changed symmetry prevails in the near surface region compared to the volume of the films and furthermore the electronic properties of the LaPt$_5$ films are affected. In addition, the vibrational properties of the LaPt$_5$ films were determined by means of polarized in situ Raman spectroscopy, in which the occurring vibrational peaks could be assigned to different depth regions of the LaPt$_5$ films (volume and surface) by knowledge of the detailed atomic structure and further considerations from group theory. In the second experimental chapter, the focus is put on the atomic structure and the electronic and magnetic properties of the Kondo- and heavy-fermion system CePt$_5$/Pt(111). Depending on the amount of Ce atoms offered before the alloying process on the Pt(111) substrate, a total of seven different LEED phases of the CePt$_5$ films could be identified, whose respective surface reconstructions are characterized by two different rotational orientations with respect to the Pt(111) substrate. Additionally the lateral lattice constant of the films are exposed to a process of stress and strain due to the lattice mismatch between film and substrate. A LEED-IV analysis confirms the growth of the films in the CaCu$_5$ structure with a Pt-rich surface termination layer whose Pt$_3$-Kagom\'{e} layer is filled with one additional Pt atom per unit cell compared to the bulk lattice. The structural results agree with results obtained in earlier studies and furthermore also illustrate the isostructural properties towards the intermetallic surface compound LaPt$_5$/Pt(111). The structural agreement between the two intermetallic surface compounds allows the determination of the $4f$ electrons induced phenomena with respect to the Kondo- and heavy-fermion behavior in CePt$_5$/Pt(111) by suitable comparative experiments on LaPt$_5$/Pt(111), since La atoms in their atomic structure do not contain $4f$ electrons. Spectra recorded with polarized in situ Raman spectroscopy of CePt$_5$ films with different film thicknesses contain both characteristic vibrational peaks and signatures of electronic transitions. The spectroscopic behavior of the vibrational peaks show similarities to LaPt$_5$/Pt(111) in the assignment of the vibrational modes to the respective depth regions in the CePt$_5$ films, but also differences occur, since one vibrational mode of CePt$_5$ is subject to an anomalous temperature behavior, which is attributed to the interaction with the $4f$ electrons. Further specific Raman signatures, which could be assigned to electronic transitions in form of level splitting of the $4f$ electron of the Ce atoms due to the crystal field of the Pt atoms, also originate from different depth regions of the CePt$_5$ films (surface, inner volume, interface). The magnetic properties of the CePt$_5$ films were analyzed with XAS and XMCD at the Ce M$_{4,5}$ edges as a function of temperature, angle of incidence, film thickness, and magnetic field strength. The prominent transitions in the inverse susceptibility between different Curie-Weiss regimes allow conclusions to be drawn about the crystal field splitting scheme, the Kondo- and RKKY-interactions and show a significant correlation with the Ce-valence. Furthermore, for all investigated CePt$_5$ film thicknesses in this thesis at low temperatures a transition to the coherent heavy-fermion state could be detected. By predicting a metamagnetic Lifshitz transition for these films, which is expressed in the magnetic field dependence of the magnetic moment, two further characteristic energy scales of the renormalized band structure could be accessed by recording magnetization curves at low temperatures and high magnetic fields. The third experimental chapter is devoted to the elucidation of the atomic structure of a quasi one-dimensional electron system with LEED and LEED-IV, in which the Au nanowires formed on the Si(111) surface can be described by a Si(111)-(5$\times$2)-Au reconstruction. The recorded LEED images include both a striking diffraction pattern and so-called diffraction streaks indicative for the existence of three equivalent rotational domains on the reconstructed surface, rotated by an angle of \unit{120}{\degree} against each other. In addition, the occurrence of diffraction streaks in the observed diffraction pattern could be explained through a theoretical simulation by the existence of three additional mirror domains on the surface, which introduce a phase shift of half a superstructure vector and should also be considered in a thorough LEED-IV analysis. From the structural models discussed vigorously in recent years in the literature after the introduction of a second recalibration of the necessary amount of Au atoms required for the formation of the Si(111)-(5$\times$2)-Au reconstruction, the geometry model established by Kwon and Kang (KK model) reflects best the observed energy-dependent intensity modulations in the experimental data when compared with calculated IV curves. For this model, the R-factor by Pendry always adopts its smallest value for the three energy series considered independently of each other at different angles of incidence of the electrons on the sample surface. Furthermore, even under explicit consideration of Si adatoms, which are additionally located on top of the reconstructed surface and can be described in a (5$\times$4) unit cell, the KK model remains the preferred structural model for the description of the Au chains formed and the Si honeycomb structure of the Si(111)-(5$\times$2)-Au surface reconstruction. In the final experimental chapter, a two-dimensional electron system -- the $\alpha$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn surface reconstruction, which is formed at a total coverage of 1/3 ML of Sn adsorbates on the Si(111) substrate -- is investigated with regard to the atomic structure at room temperature with LEED and LEED-IV. From a total of six structural models included in the analysis, in which the Sn atoms on an ideally terminated Si(111) surface occupy different adsorption sites within the reconstructed ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$ unit cell, it was possible to exclude alloying such as observed for the $\gamma$- Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn phase. The Sn atoms rearrange exclusively on the surface and lead to a relaxation of the underlying substrate, whose atomic displacements can be traced back to the sixth Si layer. In comparison to earlier structural investigations conducted on this material system, the presented analysis confirms that the deposited Sn atoms are energetically favorably deposited at T$_4$ adsorption sites. Furthermore, the experimental data recorded at three different angles of incidence from different positions on the sample show indications of an existing and/or missing Si atom on a S$_5$ lattice site in the underlying Si(111) substrate. In addition, the theoretical prediction of the dynamic fluctuation model for this surface reconstruction could be proven in the model calculations of the dynamic scattering theory due to the very strongly increased thermal displacements of the Sn atoms from their equilibrium position. Besides from the irregularly arranged Si defects, this could be a hint for the absence of the reversible structural phase transition at low temperatures from a ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$ phase to a (3$\times$3) phase, as it occurs in the electronically comparable adsorbate system Ge(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn. KW - Schwere-Fermionen-System KW - LEED KW - Magnetischer Röntgenzirkulardichroismus KW - Raman-Spektroskopie KW - Kristallfeld KW - dünne intermetallische Filme KW - geordnete Metalladsorbate auf Halbleiteroberflächen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192749 ER - TY - THES A1 - Zimmermann, Jörg T1 - Optische Wellenleiter und Filter in photonischen Kristallen auf Indiumphosphid-Basis T1 - Optical waveguides and filters in photonic crystals based on indium phosphide N2 - Im Rahmen dieser Arbeit wurden optische Wellenleiter und Filter in zweidimensionalen photonischen Kristallen auf Indiumphosphid-Basis hergestellt, numerisch modelliert sowie experimentell im für die optische Nachrichtentechnik wichtigen Wellenlängenbereich um 1,55 µm untersucht. Photonische Kristalle weisen eine periodische Variation des Brechungsindex auf. Durch das gezielte Einbringen von Defekten in die periodische Struktur ist eine Manipulation der photonischen Zustandsdichte und somit der Lichtausbreitung möglich. Grundbaustein der durchgeführten Untersuchungen ist der lineare Defektwellenleiter in einem triangulären Gitter aus Luftlöchern in einer Halbleitermatrix, der durch das Auslassen von einer oder mehreren Lochreihen entsteht. Die Wellenführung in vertikaler Richtung wird durch eine Halbleiterheterostruktur mit einer Wellenleiterkernschicht aus InGaAsP oder InGaAlAs und Mantelschichten mit niedrigerem Brechungsindex realisiert. Die Einbettung des zweidimensionalen Lochgitters in die InP-basierte Halbleiterheterostruktur erlaubt die Integration mit aktiven optoelektronischen Bauteilen wie Sende- und Empfangselementen sowie die Verwendung bestehender Halbleiterstrukturierungstechnologien. Die photonischen Kristall-Wellenleiter wurden mit hochauflösender Elektronenstrahllithographie und einem zweistufigen Trockenätzprozess hergestellt. Damit konnten Lochradien von 100 nm und Lochtiefen von 4 µm realisiert werden. Zur experimentellen Untersuchung der hergestellten Strukturen wurden Messplätze für die optische Charakterisierung von Transmission und chromatischer Dispersion von photonischen Kristall-Wellenleitern und -Filtern aufgebaut und die Phasenverschiebungsmethode sowie die Modulationsmethode mit Offset angewendet. Damit konnte erstmals direkt die Gruppenlaufzeitdispersion eines photonischen Kristall-Wellenleiter-Filters gemessen werden. Numerische Untersuchungen wurden mit dem Verfahren der Entwicklung nach ebenen Wellen sowie mit dem FDTD-Verfahren durchgeführt. Die photonischen Kristall-Wellenleiter besitzen mehrere Wellenleitermoden, die teilweise refraktiven (auf Totalreflexion beruhenden) und teilweise diffraktiven (auf Bragg-Reflexion beruhenden) Charakter haben. Je nach Symmetrie treten zwischen den Moden Ministoppbänder auf, die sich im Transmissionsspektrum als Intensitätseinbrüche darstellen. Die spektrale Lage dieser Ministoppbänder hängt von der Wellenleitergeometrie ab. Messungen an Wellenleitern mit verschiedener Länge zeigen eine starke Variation der spektralen Breite der Ministoppbänder. Diese kann mit der Theorie der gekoppelten Moden unter Annahme unterschiedlicher Dämpfungswerte für die gekoppelten Wellenleitermoden erklärt werden. Die entscheidene Wellenleitereigenschaft für praktische Anwendungen ist die Wellenleiterdämpfung. Diese wurde mit den Verfahren der Fabry-Pérot-Resonanzen sowie der Längenvariation experimentell bestimmt. Durch Wahl eines geeigneten Schichtaufbaus und Optimierung der Herstellungsprozesse konnten die für das untersuchte Materialsystem niedrigsten Dämpfungswerte in photonischen Kristall-Wellenleitern erzielt werden. Für W7-, W5- und W3-Wellenleiter wurden Dämpfungswerte von 0,2 dB/mm, 0,6 dB/mm und 1,5 dB/mm erreicht, die schmaleren W1-Wellenleiter zeigen Verluste von 27 dB/mm. Zwei Typen optischer Wellenleiter-Filter wurden untersucht: Richtkoppler sowie Resonatoren. Photonische Kristall-Wellenleiter-Richtkoppler eignen sich als ultrakompakte Demultiplexer und Kanal-Auslasser. Bei den experimentell realisierten photonischen Kristall-Wellenleiter-Richtkopplern konnte das eingekoppelte Licht je nach Wellenlänge in den einen oder anderen Ausgangswellenleiter gelenkt werden. Bei photonischen Kristall-Wellenleitern mit Resonatoren konnten Güte-Faktoren bis zu 1,5*10^4 bei einem Kanalabstand von 100 GHz realisiert werden. Die Gruppenlaufzeitdispersion in diesen Strukturen variiert zwischen -250 ps/nm und +250 ps/nm, so dass mit einem 420 µm langen photonischen Kristall-Wellenleiter-Filter die Dispersion von 15 km Standardglasfaser bei 1,55 µm Wellenlänge kompensiert werden kann. Mit Hilfe von kleinen Temperaturänderungen kann die Resonanzkurve verschoben werden. Der demonstrierte photonische Kristall-Wellenleiter-Resonator stellt daher einen miniaturisierten durchstimmbaren Dispersionskompensator dar. N2 - Optical waveguides and filters in two-dimensional photonic crystals based on indium phosphide have been fabricated and investigated both numerically and experimentally in the spectral range around the optical communication wavelength of 1.55 µm. Photonic crystals are composed of a periodic arrangement of materials with different refractive indices, e.g. semiconductor material and air, on the scale of the wavelength of light. By inserting defects into the periodic structure, the propagation of light can be manipulated. The linear defect waveguide in a triangular lattice of air holes formed by the omission of one or several rows of holes, serves as the basic building block for the investigated optical filters. Optical confinement in vertical direction is realized by a semiconductor heterostructure with a waveguide core layer out of InGaAsP or InGaAlAs and cladding layers with lower refractive index. Embedding the two-dimensional lattice of air holes in an InP based heterostructure allows for the integration with active optoelectronic devices such as emitters and receivers and the application of existing semiconductor fabrication technologies. The photonic crystal waveguides were fabricated by high-resolution electron beam lithography and a two-step dry etching process, resulting in air holes with radii of 100 nm and depths of 4 µm. For the experimental investigations of the fabricated structures, measurement setups for the optical characterization of transmission and chromatic dispersion of photonic crystal waveguides and waveguide filters were installed. The phase shift method and the modulation method with offset were applied. The group velocity dispersion of a photonic crystal waveguide filter has been measured for the first time. Numerical studies were performed using two-dimensional plane wave expansion and finite difference time domain computations. Several waveguide modes can exist in the photonic crystal waveguides, some of which are of refractive (based on total internal reflection) and some of which are of diffractive nature (based on Bragg reflection). Depending on the mode symmetry, mini-stopbands can occur between the modes, which are observed as intensity dips in the transmission spectra. Transmission measurements of waveguides with various lengths show a strong variation of the spectral width of these mini-stopbands. This behavior can be explained by coupled-mode theory assuming different attenuation coefficients for the coupling waveguide modes. The property most critical for potential use in large-scale photonic integrated circuits is the waveguide loss. The waveguide loss was experimentally determined by the Fabry-Pérot resonance method and by transmission measurements of waveguides with various lengths. By choosing a suitable layer structure and optimizing the fabrication process, it was possible to achieve the lowest waveguide attenuation values for the investigated materials system. For W7, W5, and W3 waveguides, attenuation values of 0.2 dB/mm, 0.6 dB/mm, and 1.5 dB/mm were achieved. The W1 waveguides exhibit waveguide losses of 27 dB/mm. Two types of optical waveguide filters were investigated: directional couplers and resonators. Photonic crystal waveguide directional couplers, formed by two closely spaced linear defect waveguides, can be used as compact demultiplexers or channel interleavers. Wavelength selective operation of the fabricated photonic crystal waveguide directional couplers was demonstrated by directing the injected light signals to either one of the output waveguides, depending on the wavelength. Photonic crystal waveguide resonators were formed by inserting two photonic crystal sections that act as partial reflectors into linear defect waveguides. The fabricated devices with a resonator length of 420 µm show quality factors up to 1.5*10^4 at a channel spacing of 100 GHz. The group velocity dispersion in these structures ranges from -250 ps/nm to +250 ps/nm, sufficing to compensate for the dispersion of 15 km of standard single-mode fiber at wavelengths around 1.55 µm. By controlling the device temperature, the resonance curve and the dispersive properties of the device can be tuned. The demonstrated photonic crystal waveguide resonator therefore can be used as a miniaturized tunable dispersion compensator. KW - Photonischer Kristall KW - Indiumphosphid KW - Lichtwellenleiter KW - Optisches Filter KW - Photonische Kristalle KW - Wellenleiter KW - Resonator KW - Dispersion KW - Indiumphosphid KW - photonic crystals KW - waveguide KW - resonator KW - dispersion KW - indium phosphide Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21767 ER - TY - THES A1 - Zimmermann, Christian T1 - Halbleiterlaser mit lateralem Rückkopplungsgitter für metrologische Anwendungen T1 - Semiconductor lasers with lateral feedback for metrological applications N2 - In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bezüglich ihrer Nutzung für metrologische Untersuchungen zu analysieren und zu verbessern. Hierfür wurden die räumlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. Für kommerziell erhältliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie bestätigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit Überlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die veränderte Fernfeldsituation wurde zunächst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlgüteuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3). Eine weitere Untersuchung betraf die Linienbreitenabhängigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorlänge, der Facettenvergütung und der Gitterkopplung. Die erste Beobachtung betraf die Verschmälerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Veränderung der Resonatorlänge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorlänge eine Verschmälerung der Linienbreite um mehr als einen Faktor 3. Die Verlängerung der Kavität begünstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der Rückkopplung sehr klein ist. Im Falle reiner Indexkopplung wäre dies durch die veränderte κ · L-Lage deutlich zu spüren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivitäten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies lässt sich ausnutzen, um die Photonenlebensdauer in der Kavität zu erhöhen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen Längen die reine gebrochene Facette mit einer vergüteten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30% gehalten und die Rückfacette durch einen doppelten Reflektor auf ca. 85% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die Hälfte. Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zusätzlich eingebrachten Verluste zu einer Vergrößerung der Linienbreiten beitragen, wird bei einem größeren geometrischen Gitterüberlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment bestätigen. Zudem wurde eine Längenabhängigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei längeren Bauteilen ist deutlich ausgeprägter als bei kürzeren. So ist bei ähnlicher Verringerung des Gitterüberlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur“ 1,85 beobachtbar, aber bei der doppelten Kavitätslänge ist dieser Faktor schon auf 3,60 angestiegen. Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt für lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde. In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer veränderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterlängen untersucht. Die Phasenlage kann reversibel über den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, bestätigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenlänge mit ihrer zugehörigen Seitenmodenunterdrückung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass für die verschiedenen Längen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdrückung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zukünftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer. N2 - The goal of this thesis was to analyze and improve the characteristics of complex-coupled DFB-lasers due to their use for metrological investigations. For this purpose, the spatial properties of the laterally complex-coupled DFB-lasers were discussed in extensive studies. It has been explained why the asymmetry of the far field for this special type of laser diode is typically quite high due to the required coupling strength. For commercially available lasers, the far field was calculated in both lateral and vertical direction. The corresponding far field measurements proofed the theory, and as expected, the divergence angles of 52° FWHM in the epitaxial direction and 12° FWHM in lateral direction (see fig. 6.4 and 6.5) showed very huge differences and confirmed the predicted high far field asymmetry. The layer stack was optimized first with regard to the optical and electrical confinement potential to change the far field situation. The far field in the epitaxial direction has been reduced by more than 50% to a value of 25° FWHM. As a result, the asymmetry of the far field could be reduced by a factor of more than 4. Beam profile measurements showed a nearly diffraction limited Gaussian beam profile in the slow axis with a M2-value of 1.13 (fig. 6.3). Additional investigations were done to determine the dependency between the linewidth of such lasers and their optical output power, resonator length, facet reflectivity and grating coupling strength. The first study was related to the narrowing of the linewidth due to the increased optical output power ending up in a rebroadening (compare fig. 7.3). The influence of the resonator length to the linewidth was very close to theory and thus a doubling of the resonator length led to a linewidth narrowing of more than factor 3. Increasing the cavity length did not favour the negative effect of the so-called rebroadening since the portion of index coupling within the used lateral complex-coupling technology is very small. In case of pure index coupling the influence due to the changed κ·L-condition would be increased. A further advantage of the complex-coupling mentioned above is the fact that the influence of the facet reflectivities on the DFB yield and laser characteristics is significantly smaller compared to pure index coupling. This can be used to increase the photon lifetime in the cavity without decreasing the DFB yield. The influence on the linewidth of as-cleaved facets was compared to coated ones with lasers of different length. The front facet was passivated to hold the as-cleaved reflectivity of about 30%, and the rear facet was coated with a layer stack to end up at about 85% reflectivity. The linewidth was more than halved. In addition to these results, the influence of complex-coupling was also investigated. As extra losses are introduced by the grating itself, the frequency noise, produced by a higher geometric overlap of the grating with the lasing mode will rise. This could also be confirmed in the experiment. It was also observed that this effect has a length driven component. Narrowing the linewidth by reducing the grating overlap has a higher influence on a longer device compared to shorter laser diodes. A factor of 1.85 on a 900 μm long device has been observed, but diodes with doubled length showed a factor of 3.60. Within the scope of this thesis, DFB-lasers were produced showing linewidths down to 198 kHz. Regarding complex-coupled laser diodes, this value for the linewidth is an absolute record. Compared to index-coupled DFB-lasers, this value matches to latest research findings [CTR+11]. In the last chapter of this work the influence of the phasing of grating and facet was discussed. Special laser diodes (3-segment DFB-lasers) with different grating lengths were produced. The phasing was determined by the injection current of the grating-free segments. As predicted, the experimental results proved the significant influence of the phasing to output power, wavelength including SMSR and the linewidth. It was also observed that for different lengths the inverse linewidth is proportional to the SMSR. This relationship could be used for improved and faster optimization of complex-coupled DFB-lasers as an investigation of the linewidth is typically more complex than a simple analysis on an optical spectrometer. KW - DFB-Laser KW - Metrologie KW - komplexe Gitterkopplung KW - Linienbreite KW - Atomuhr Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159618 ER - TY - THES A1 - Ziener, Christian H. T1 - Suszeptibilitätseffekte in der Kernspinresonanzbildgebung T1 - Susceptibility effects in nuclear magnetic resonance imaging N2 - Das Dephasierungsverhalten und die daraus resultierende Relaxation der Magnetisierung sind Grundlage aller auf der Kernspinresonanz basierenden bildgebenden Verfahren. Das erhaltene Signalder präzedierenden Protonen wird wesentlich von den Eigenschaften des untersuchten Gewebes bestimmt. Insbesondere die durch magnetisierte Stoffe wie z. B. desoxygeniertes Blut (BOLD-Effekt) oder magnetische Nanopartikel erzeugten Suszeptibilitätssprünge gewinnen zunehmend Bedeutung in der biomedizinischen Bildgebung. In der vorliegenden Arbeit wurden die Einflüsse von Feldinhomogenitäten auf das NMR-Signal untersucht. N2 - The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. KW - Magnetische Kernresonanz KW - Magnetische Suszeptibilität KW - NMR-Bildgebung KW - nuclear magnetic resonance KW - magnetic susceptibility KW - magnetic resonance imaging Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35425 ER - TY - THES A1 - Zeller, Wolfgang T1 - Entwicklung und Charakterisierung von Hochleistungslaserdioden bei 980 nm Wellenlänge T1 - Development and characterization of high-power laser diodes at 980 nm wavelength N2 - Ziel der Arbeit war die Entwicklung von lateral gekoppelten DFB-Halbleiterlasern für Hochleistungsanwendungen. Besonderes Augenmerk war dabei auf hohe COD-Schwellen und schmale Fernfeldverteilungen gerichtet. Ausgehend von einem LOC-Design wurden Simulationsrechnungen durchgeführt und ein neues Epitaxiedesign mit einer 2.5 μm dicken LOC, in welcher die aktive Schicht asymmetrisch positioniert ist, entwickelt. Durch die asymmetrische Anordnung der aktiven Schicht kann die im Falle von lateral gekoppelten DFB-Lasern sehr kritische Kopplung der Lichtmode an das modenselektive Gitter gewährleistet werden. Zudem reichen die Ausläufer der Lichtmode in diesem Design weiter in den Wellenleiter hinab als dies bei herkömmlichen Wellenleitern der Fall ist, so dass sich die Fernfeldeigenschaften der Laser verbessern. Die Fernfeldverteilungen solcher Laser weisen Halbwertsbreiten von 14° in lateraler und nur 19° in transversaler Richtung auf. Im Vergleich mit Standardstrukturen konnte die Ausdehnung des transversalen Fernfeldes also um mehr als 50 % reduziert werden. Außerdem ergibt sich eine nahezu runde Abstrahlcharakteristik, was die Einkopplungseffizienz in optische Systeme wie Glasfasern oder Linsen signifikant verbessert. Unter Ausnutzung der entwickelten Epitaxiestruktur mit asymmetrischer LOC wurde ein neues Lateraldesign entwickelt. Es handelt sich hierbei um Wellenleiterstege welche im Bereich der Facetten eine Verjüngung aufweisen. Durch diese wird die optische Mode tief in die 2.5 μm dicke Wellenleiterschicht geführt, welche sie in transversaler Richtung komplett ausfüllt. Durch den größeren Abstand der Lasermode vom Wellenleitersteg ergibt sich zudem eine deutliche schwächere laterale Führung, so dass sich die Mode auch parallel zur aktiven Schicht weiter ausdehnt. Die Lichtmode breitet sich folglich über eine deutlich größere Fläche aus, als dies bei einem gleichbleibend breiten Wellenleitersteg der Fall ist. Die somit signifikant kleinere Leistungsdichte auf der Laserfacette ist gleichbedeutend mit einem Anstieg der COD-Schwelle der Laser der im Einzelnen von den jeweiligen Designparametern von Schicht- und Lateralstruktur abhängig ist. Außerdem bewirkt die in lateraler und transversaler Richtung deutlich schwächere Lokalisation der Mode eine weitere Abnahme der Halbwertsbreiten der Laserfernfelder. Durch die im Vergleich zu herkömmlichen Laserstrukturen schwächere Lokalisation der Lichtmode im Bereich der Facetten ergeben sich äußerst schmale Fernfelder. Ein 1800 μm langer Laser, dessen Stegbreite über 200 μm hinweg auf 0.4 μm verringert wurde, zeigt Halbwertsbreiten von 5.2° in lateraler und 13.0° in transversaler Richtung. Damit sind die Fernfelder dieser Laser bedeutend kleiner als die bislang vorgestellter Laserdioden mit LOC. Die Geometrie der Taperstrukturen bestimmt, wie vollständig sich die Mode in den unteren Wellenleiterbereich ausbreiten kann und nimmt damit Einfluss auf die Laserfernfelder. Im CW-Modus durchgeführte Messungen an Lasern mit Taperstrukturen zeigen maximale Ausgangsleistung von 200 mW bevor die Laser in thermisches Überrollen übergehen. Bei einer Ausgangsleistung von 185 mW beträgt das Seitenmodenunterdrückungsverhältnis 33 dB. Im gepulsten Modus (50 ns Pulsdauer, 1MHz Wiederholungsrate) betriebene Laser zeigen hohe COD-Schwellen von mehreren hundert bis hin zu 1600 mW, die eine deutliche Abhängigkeit von der Endbreite der Taperstrukturen zeigen: Mit abnehmender Taperbreite ergibt sich eine starke Zunahme der COD-Schwelle. An einem 1800 μm langen Laser mit 200 μm langen Taperstrukturen die eine Endbreite von 0.3 μm aufweisen konnte eine COD-Schwelle von 1.6 W nachgewiesen werden. Im Gegensatz zu anderen Ansätzen, die ebenfalls longitudinal und lateral mono-modige DFB-Laser mit hohen Ausgangsleistungen zum Ziel haben, kann jedoch bei dem hier präsentierten Konzept aufgrund des Einsatzes von lateralen DFB-Gittern auf eine Unterbrechung des epitaktischen Wachstums verzichtet werden. Dies vereinfacht die Herstellung der Schichtstrukturen deutlich. Die hier vorgestellten Konzepte sind mit weiteren üblichen Vorgehensweisen zur Herstellung von Hochleistungslaserdioden, wie z.B. speziellen Facettenreinigungs- und Passivierungsverfahren oder Materialdurchmischung im Facettenbereich, kombinierbar. Zudem kann das hier am Beispiel des InGaAs/GaAs Materialsystems entwickelte Konzept auf alle zur Herstellung von Halbleiterlaserdioden üblichen Materialsysteme übertragen werden und eröffnet so eine völlig neue, material- und wellenlängenunabhängige Möglichkeit Abstrahlcharakteristik und Ausgangsleistung von Laserdioden zu optimieren. N2 - The primary objective of this work was the development of laterally coupled DFB semiconductor laser diodes for high-power applications. Special attention was turned to high COD thresholds and narrow farfield distributions. Based on a LOC design, simulations were undertaken and a new epitaxial design was devised featuring an active layer positioned asymmetrically in a LOC with a height of 2.5 μm. This design guarantees good coupling between the light mode and the lateral grating, something that is especially critical in the case of laterally coupled DFB lasers. Furthermore, due to this design the fringes of the light mode extend farther into the waveguide layers than possible in conventional waveguides, thereby improving the farfield characteristics of the devices. The farfield distributions of these laser diodes exhibit FWHM values of 14° in lateral and only 19° in transversal direction. Compared to standard designs the dimension of the transversal farfield could be reduced by more than 50 %, resulting in an almost circular farfield pattern, hence improving the coupling efficiency into optical fibers or lenses significantly. Based on the developed epitaxial design with an asymmetrical LOC, a new ridge design was devised. It features RWGs that are tapered down to a width of only several hundred nanometers at both ends of the laser cavity. Due to this tapered sections, the optical mode is pushed down into the 2.5 μm thick waveguide, filling it out completely in transversal direction. Because of the increased distance between the lasing mode and the RWG, the lateral mode guiding is also decreased, resulting in an expansion parallel to the epitaxial layers as well. Consequently the light spreads over a significantly larger area than in the case of a RWG of constant width. The thusly reduced power density at the laser facet is tantamount to an increase in COD threshold the extent of which depends on the particular design parameters of layer and ridge design respectively. Furthermore, the weaker localisation of the light mode causes a further decrease of the farfields’ FWHM values. Due to the localisation of the light mode being weaker than in conventional laser structures, the measured lasers’ farfield distributions are very narrow. A 1800 μm long laser with a 2.0 μm wide RWG tapered down to 0.4 μm over a length of 200 μm yields FWHM values of 5.2° in lateral and 13.0° in transversal direction. These values are considerably smaller than those achieved with other laser diodes based on LOC structures presented up to now. The layout of the taper structures determines the degree of the spread into the lower waveguide and therefore influences the farfield distributions. When measured in CW mode, the tapered lasers show a maximum optical output power of 200 mW before exhibiting thermal roll-over. Measured at an output power of 185 mW, the spectral characteristics yield a SMSR of 33 dB. Operated in pulsed mode (50 ns pulse length, 1 MHz repetition rate), the laser diodes show high COD thresholds of several hundred up to 1600 mW. The COD thresholds exhibit a strong dependence on the taper width viz. a fast increase of COD threshold with decreasing taper width. Data derived from measurements conducted with a 1800 μm long laser that was tapered down to a ridge width of only 0.3 μm over a length of 200 μm, yield a COD threshold of 1.6 W. Other approaches aiming at laterally and longitudinally mono-mode high-power DFB lasers are based on an epitaxial overgrowth step. This highly risky procedure could be foregone due to the use of DFB gratings positioned laterally to the RWG. The concepts presented here are fully compatible with other procedures usually used for manufacturing high power laser diodes with high COD thresholds, such as special facet cleaning and passivation procedures or quantum-well-intermixing. Above all, although the concept developed in this work was based on the InGaAs/GaAs material system, it can be transferred to virtually every material system used for the fabrication of semiconductor laser diodes. Thus the presented concept establishes a new way of optimizing both farfield and output power of laser diodes that is independent of both material system and emission wavelength. KW - DFB-Laser KW - mono-mode laser KW - quantum-well laser KW - DFB laser KW - high-power laser KW - large optical cavity KW - tapered laser KW - Einmodenlaser KW - Quantenwell-Laser KW - Quantenpunktlaser KW - Galliumarsenidlaser Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73409 ER - TY - THES A1 - Zapf, Michael T1 - Oxidische Perovskite mit Hoher Massenzahl Z: Dünnfilmdeposition und Spektroskopische Untersuchungen T1 - High-Z Perovskite Oxides: Thin Film Deposition and Spectroscopic Investigations N2 - Perovskite oxides are a very versatile material class with a large variety of outstanding physical properties. A subgroup of these compounds particularly tempting to investigate are oxides involving high-\(Z\) elements, where spin-orbit coupling is expected to give rise to new intriguing phases and potential application-relevant functionalities. This thesis deals with the preparation and characterization of two representatives of high-\(Z\) oxide sample systems based on KTaO\(_3\) and BaBiO\(_3\). KTaO\(_3\) is a band insulator with an electronic valence configuration of Ta 5\(d\)\(^0\) . It is shown that by pulsed laser deposition of a disordered LaAlO\(_3\) film on the KTaO\(_3\)(001) surface, through the creation of oxygen vacancies, a Ta 5\(d\)\(^{0+\(\delta\)}\) state is obtained in the upmost crystal layers of the substrate. In consequence a quasi two dimensional electron system (q2DES) with large spin-orbit coupling emerges at the heterointerface. Measurements of the Hall effect establish sheet carrier densities in the range of 0.1-1.2 10\(^{14}\) cm\(^2\), which can be controlled by the applied oxygen background pressure during deposition and the LaAlO\(_3\) film thickness. When compared to the prototypical oxide q2DESs based on SrTiO\(_3\) crystals, the investigated system exhibits exceptionally large carrier mobilities of up to 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) at room temperature (below 10 K). Through a depth profiling by photoemission spectra of the Ta 4\(f\) core level it is shown that the majority of the Ta 5\(d\)\(^0\) charge carriers, consisting of mobile and localized electrons, is situated within 4 nm from the interface at low temperatures. Furthermore, the momentum-resolved electronic structure of the q2DES \(buried\) underneath the LaAlO\(_3\) film is probed by means of hard X-ray angle-resolved photoelectron spectroscopy. It is inferred that, due to a strong confinement potential of the electrons, the band structure of the system is altered compared to \(n\)-doped bulk KTO. Despite the constraint of the electron movement along one direction, the Fermi surface exhibits a clear three dimensional momentum dependence, which is related to a depth extension of the conduction channels of at least 1 nm. The second material, BaBiO\(_3\), is a charge-ordered insulator, which has recently been predicted to emerge as a large-gap topological insulator upon \(n\)-doping. This study reports on the thin film growth of pristine BaBiO\(_3\) on Nb:SrTiO\(_3\)(001) substrates by means of pulsed laser deposition. The mechanism is identified that facilitates the development of epitaxial order in the heterostructure despite the presence of an extraordinary large lattice mismatch of 12 %. At the heterointerface, a structurally modified layer of about 1.7 nm thickness is formed that gradually relieves the in-plane strain and serves as the foundation of a relaxed BBO film. The thereupon formed lattice orders laterally in registry with the substrate with the orientation BaBiO\(_3\)(001)||SrTiO\(_3\)(001) by so-called domain matching, where 8 to 9 BaBiO\(_3\) unit cells align with 9 to 10 unit cells of the substrate. Through the optimization of the deposition conditions in regard to the cation stoichiometry and the structural lattice quality, BaBiO\(_3\) thin films with bulk-like electronic properties are obtained, as is inferred from a comparison of valence band spectra with density functional theory calculations. Finally, a spectroscopic survey of BaBiO\(_3\) samples of various thicknesses resolves that a recently discovered film thickness-controlled phase transition in BaBiO\(_3\) thin films can be traced back to the structural and concurrent stoichiometric modifications occuring in the initially formed lattice on top of the SrTiO\(_3\) substrate rather than being purely driven by the smaller spatial extent of the BBO lattice. N2 - Komplexe Metalloxide mit Perowskitstruktur sind bekannt für ihre große Vielfalt einzigartiger physikalischer Eigenschaften. Eine interessante Untergruppe dieser Materialien sind Verbindungen von Elementen mit hoher Ordnungszahl \(Z\), in denen neue, durch Spin-Bahn Kopplung getriebene Phasen und anwendungsrelevante Funktionalitäten erwartet werden. Diese Arbeit handelt von der Präparation und Charakterisierung zweier Probensysteme, die auf eben solchen Materialien mit hoher \(Z\) basieren. KTaO\(_3\) ist ein Bandisolator, der im Grundzustand eine Ta 5\(d\)\(^0\) Valenz besitzt. Durch gepulste Laserdeposition von ungeordnetem LaAlO\(_3\) auf der KTaO\(_3\)(001) Oberfläche, werden die obersten Schichten des Substratkristalls durch die Erzeugung von Sauerstofffehlstellen dotiert. Es bildet sich ein quasi zweidimensionales metallisches Elektronensystem (q2DES) an der Grenzfläche der Heterostruktur aus. Messungen des Hall-Effekts ergeben Schichtladungsträgerdichten im Bereich von 0.1-1.2 10\(^{14}\) cm\(^2\), welche durch Anpassung des Sauerstoffhintergrunddrucks während der Deposition bzw. durch die Dicke der abgeschiedenen LaAlO\(_3\) Schicht beeinflusst werden können. Mit Werten von 30 cm\(^2\)/Vs (7000 cm\(^2\)/Vs) bei Raumtemperatur (unter 10 K), besitzt das q2DES in LaAlO\(_3\)/KTaO\(_3\) im Vergleich zu ähnlichen Elektronensystemen in SrTiO\(_3\) bemerkenswert große Ladungsträgerbeweglichkeiten. Aus dem Tiefenprofil des Photoemissionspektrums des Ta 4\(f\) Rumpfniveaus ergibt sich, dass sich der Großteil der Ta 5\(d\) Ladungsträger, bestehend aus mobilen und lokalisierten Elektronen, innerhalb einer Schicht von 4 nm Dicke befindet. Die Vermessung der elektronischen Bandstruktur des vergrabenen q2DES mit Hilfe winkelaufgelöster Photoelektronenspektroskopie mit harter Röntgenstrahlung zeigt, dass das Elektronensystem, vermutlich wegen des starken Potentialgradients an der Grenzfläche, eine modifizierte elektronische Struktur gegenüber n-dotiertem Bulk-KTaO\(_3\) aufweist. Trotz der Einschränkung der Bewegung der Elektronen entlang einer Richtung, besitzt die Fermifläche des Systems eine dreidimensionale Struktur, woarus auf eine Tiefenausdehnung der metallischen Zustände von mindestens 1 nm geschlossen werden kann. Undotiertes BaBiO\(_3\) ist durch die Ausbildung einer Ladungsordnung isolierend. Unter Elektronendotierung gilt das Material als Kandidat für einen oxidischen topologischen Isolator. In dieser Studie wird die Deposition von BaBiO\(_3\) auf Nb:SrTiO\(_3\)(001) Substraten untersucht. Dabei wird der Mechanismus identifiziert, der epitaktisches Wachstum von BaBiO\(_3\), trotz einer Gitterfehlanpassung von 12 %, ermöglicht: Eine 1.7 nm dicke Lage mit abweichender Kristallstruktur an der Grenzfläche entkoppelt das Filmgitter vom Substrat, sodass darüber vollständig relaxiertes BaBiO\(_3\) aufwachsen kann. Dieses weist eine epitaktische Orientierung von BaBiO\(_3\)(001)||SrTiO\(_3\)(001) auf, die durch die Ausbildung von lateralen Gitterdomänen, bei denen 8 bzw. 9 BaBiO\(_3\) auf 9 bzw. 10 SrTiO\(_3\) Einheitszellen ausgerichtet sind, gewährleistet wird. Die Stoichiometrie und die strukturelle Qualität der BaBiO\(_3\) Filme werden durch eine systematische Anpassung der Depositionsbedingungen optimiert. Die Valenzbandstruktur der Proben stimmt gut mit Rechnungen der Dichtefunktionaltheorie überein, was darauf hindeutet, dass die Filme hinsichtlich der elektronischen Eigenschaften mit BaBiO\(_3\) Einkristallen vergleichbar sind. Eine abschließende Untersuchung eines schichtdickenabhängigen Phasenübergangs in BaBiO\(_3\) Dünnfilmen, von dem kürzlich in der Literatur berichtet wurde, belegt, dass dieser nicht allein auf die Ausdehnung des Kristallgitters, sondern auch auf strukturelle und stoichiometrische Modifikationen der untersten Filmlagen zurückzuführen ist. KW - Perowskit KW - Röntgen-Photoelektronenspektroskopie KW - Pulsed laser deposition KW - Übergangsmetalloxide KW - KTaO3 KW - BaBiO3 KW - Oxide Heterostructure KW - Interface Conductivity KW - oxidische Heterostruktur KW - Grenzflächenleitfähigkeit KW - Winkelaufgelöste Photoemission mit harten Röntgenstrahlen KW - Hard X-ray Angle Resolved Photoemission KW - High-Z Oxides KW - HARPES Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185370 ER - TY - THES A1 - Youssef, Almoatazbellah T1 - Fabrication of Micro-Engineered Scaffolds for Biomedical Application T1 - Fabrikation von Scaffolds mit optimierter Mikroarchitektur für biomedizinische Anwendungen N2 - Thermoplastic polymers have a history of decades of safe and effective use in the clinic as implantable medical devices. In recent years additive manufacturing (AM) saw increased clinical interest for the fabrication of customizable and implantable medical devices and training models using the patients’ own radiological data. However, approval from the various regulatory bodies remains a significant hurdle. A possible solution is to fabricate the AM scaffolds using materials and techniques with a clinical safety record, e.g. melt processing of polymers. Melt Electrowriting (MEW) is a novel, high resolution AM technique which uses thermoplastic polymers. MEW produces scaffolds with microscale fibers and precise fiber placement, allowing the control of the scaffold microarchitecture. Additionally, MEW can process medical-grade thermoplastic polymers, without the use of solvents paving the way for the production of medical devices for clinical applications. This pathway is investigated in this thesis, where the layout is designed to resemble the journey of a medical device produced via MEW from conception to early in vivo experiments. To do so, first, a brief history of the development of medical implants and the regenerative capability of the human body is given in Chapter 1. In Chapter 2, a review of the use of thermoplastic polymers in medicine, with a focus on poly(ε-caprolactone) (PCL), is illustrated, as this is the polymer used in the rest of the thesis. This review is followed by a comparison of the state of the art, regarding in vivo and clinical experiments, of three polymer melt AM technologies: melt-extrusion, selective laser sintering and MEW. The first two techniques already saw successful translation to the bedside, producing patient-specific, regulatory-approved AM implants. To follow in the footsteps of these two technologies, the MEW device parameters need to be optimized. The MEW process parameters and their interplay are further discussed in Chapter 3 focusing on the importance of a steady mass flow rate of the polymer during printing. MEW reaches a balance between polymer flow, the stabilizing electric field and moving collector to produce reproducible, high-resolution scaffolds. An imbalance creates phenomena like fiber pulsing or arcing which result in defective scaffolds and potential printer damage. Chapter 4 shows the use of X-ray microtomography (µCT) as a non-destructive method to characterize the pore-related features: total porosity and the pore size distribution. MEW scaffolds are three-dimensional (3D) constructs but have long been treated in the literature as two-dimensional (2D) ones and characterized mainly by microscopy, including stereo- and scanning electron microscopy, where pore size was simply reported as the distance between the fibers in a single layer. These methods, together with the trend of producing scaffolds with symmetrical pores in the 0/90° and 0/60/120° laydown patterns, disregarded the lateral connections between pores and the potential of MEW to be used for more complex 3D structures, mimicking the extracellular matrix. Here we characterized scaffolds in the aforementioned symmetrical laydown patterns, along with the more complex 0/45/90/135° and 0/30/60/90/120/150° ones. A 2D pore size estimation was done first using stereomicroscopy, followed by and compared to µCT scanning. The scaffolds with symmetrical laydown patterns resulted in the predominance of one pore size, while those with more complex patterns had a broader distribution, which could be better shown by µCT scans. Moreover, in the symmetrical scaffolds, the size of 3D pores was not able to reach the value of the fiber spacing due to a flattening effect of the scaffold, where the thickness of the scaffold was less than the fiber spacing, further restricting the pore size distribution in such scaffolds. This method could be used for quality assurance of fabricated scaffolds prior to use in in vitro or in vivo experiments and would be important for a clinical translation. Chapter 5 illustrates a proof of principle subcutaneous implantation in vivo experiment. MEW scaffolds were already featured in small animal in vivo experiments, but to date, no analysis of the foreign body reaction (FBR) to such implants was performed. FBR is an immune reaction to implanted foreign materials, including medical devices, aimed at protecting the host from potential adverse effects and can interfere with the function of some medical implants. Medical-grade PCL was used to melt electrowrite scaffolds with 50 and 60 µm fiber spacing for the 0/90° and 0/60/120° laydown patterns, respectively. These implants were implanted subcutaneously in immunocompetent, outbred mice, with appropriate controls, and explanted after 2, 4, 7 and 14 days. A thorough characterization of the scaffolds before implantation was done, followed by a full histopathological analysis of the FBR to the implants after excision. The scaffolds, irrespective of their pore geometry, induced an extensive FBR in the form of accumulation of foreign body giant cells around the fiber walls, in a manner that almost occluded available pore spaces with little to no neovascularization. This reaction was not induced by the material itself, as the same reaction failed to develop in the PCL solid film controls. A discussion of the results was given with special regard to the literature available on flat surgical meshes, as well as other hydrogel-based porous scaffolds with similar pore sizes. Finally, a general summary of the thesis in Chapter 6 recapitulates the most important points with a focus on future directions for MEW. N2 - Thermoplastische Polymere werden seit Jahrzehnten erfolgreich in der Klinik eingesetzt und für die Herstellung von Medizinprodukten verwendet. Vorangetrieben durch das zunehmende klinische Interesse an additiven Fertigungsverfahren, z.B. zur Herstellung patientenspezifischer Trainingsmodelle und implantierbarer Medizinprodukte, rücken thermoplastische Materialien noch mehr in den Fokus der klinischen Forschung. Allerdings stellt die Marktzulassung durch die verschiedenen Gesundheitsbehörden eine große Hürde dar. Eine mögliche Lösung ist die Gerüstfabrikation mit Materialien und Verfahren, die bereits etablierte Sicherheitsstandards durchlaufen haben, z. B. die Schmelzverarbeitung der Polymere. Ein neuartiges und hochauflösendes additives Fertigungsverfahren, welches die Verarbeitung von Thermoplasten ermöglicht, ist Melt Electrowriting (MEW). Mittels MEW lassen sich Gerüste, die aus Fasern mit Durchmessern im Mikrometerbereich zusammengesetzt sind, herstellen. Neben der hohen Kontrolle über den Faserdurchmesser ermöglicht MEW auch eine genaue Ablage der Fasern und erlaubt dadurch, die Mikroarchitektur der Konstrukte vorzugeben. Zudem kann das Verfahren medizinisch zugelassene thermoplastische Polymere ohne die Verwendung von Lösungsmitteln verarbeiten und ist somit für die Herstellung medizinischer Produkte sehr relevant. Diese Relevanz sollte im Rahmen der vorliegenden Dissertation evaluiert werden, indem der Weg, den ein Medizinprodukt von der Konzeption bis hin zu in vivo Vorversuchen durchlaufen muss, anhand von Konstrukten, die mittels MEW hergestellt wurden, nachgeahmt wurde. Um eine Basis für das Verständnis dieses Prozesses zu schaffen, wird in Kapitel 1 erst die Geschichte der Entwicklung medizinischer Implantate zusammengefasst sowie ein Einblick in die regenerativen Fähigkeiten des menschlichen Körpers gegeben. Das zweite Kapitel befasst sich mit der Anwendung von thermoplastischen Polymeren im Bereich implantierbarer Medizinprodukte, wobei der Hauptfokus auf Poly(ε-caprolactone) (PCL) liegt, da dies der in der vorliegenden Arbeit verwendete Thermoplast ist. Es folgt ein Vergleich von in vivo sowie klinischen Versuchen dreier für die Biomedizin relevanten additiven Fertigungsverfahren, mit denen sich thermoplastische Polymere verarbeiten lassen: Die Mikro-Schmelzextrusion, das selektive Lasersintern und das MEW. Die ersten zwei Verfahren sind bereits erfolgreich in klinischen Anwendungen etabliert und ermöglichen die routinemäßige Herstellung von additiv gefertigten, patientenspezifischen, auf dem Markt zugelassenen Implantaten. Damit MEW in diese Fußstapfen treten kann, müssen die Prozessparameter und deren Zusammenspiel genau analysiert werden. Dieser Thematik widmet sich Kapitel 3, wobei die Untersuchung des Massendurchsatzes des Polymers während des Druckens diskutiert wird. Um den MEW-Prozess kontrollieren zu können, muss eine Balance zwischen Polymerdurchsatz, dem stabilisierenden elektrischen Feld und dem beweglichen Kollektor erreicht werden. Dies ist Grundlage für die reproduzierbare Herstellung hochaufgelöster Konstrukte. Ein Ungleichgewicht der Prozessparameter verursacht Phänomene wie Fiber Pulsing oder sogar elektrischen Durchschlag, welche zu defekten Konstrukten oder sogar zur Schädigung des Druckers führen können. Kapitel 4 zeigt die Anwendung der Röntgenmikrocomputertomographie (µCT) als eine zerstörungsfreie Charakterisierungsmethode für MEW-Konstrukte, die die Quantifizierung charakteristischer Eigenschaften wie der Porosität und der Porengrößenverteilung ermöglicht. MEW-Konstrukte wurden in der Literatur lange als zweidimensional behandelt und hauptsächlich durch mikroskopische Verfahren wie die Stereo- und Rasterelektronmikroskopie charakterisiert. Die zweidimensionale Porengröße wurde hauptsächlich durch die Bestimmung des Faserabstands definiert und daraus errechnet, mit einer Tendenz der Herstellung der Konstrukte mit symmetrischen Poren in 0/90° und 0/60/120° Ablagemustern. Da es sich bei den Konstrukten jedoch um dreidimensionale (3D) Fasergerüste handelt, wurden die seitlichen Verbindungen zwischen den Poren und das Potential der Anwendung des MEW für die Herstellung von komplexeren 3D-Strukturen, wie bei der extrazellulären Matrix mit interkonnektierenden Poren, vernachlässigt. Aus diesem Grund wurden in der vorliegenden Arbeit µCT-Scans verwendet, um die Porosität der Konstrukte besser wiedergeben zu können. Hierzu wurden verschiedene Ablagemuster mit symmetrischen Poren in 0/90° und 0/60/120° Mustern und komplexere Porenstrukturen durch Ablagen von 0/45/90/135° und 0/30/60/90/120/150° Geometrien hergestellt. Diese Konstrukte wurden dann mittels mikroskopischer und tomographischer Aufnahmen charakterisiert und die Ergebnisse miteinander verglichen. Es zeigte sich, dass symmetrische Ablagemuster zu Konstrukten mit der Prädominanz einer Porengröße geführt haben. Bei den komplexeren Strukturen ergab sich jedoch ein klarer Unterschied, weil die interkonnektierenden Poren nur mit Hilfe von µCT-Scans erfasst werden konnten. Dies zeigte sich durch eine breitere Porenverteilung bei der Auswertung der rekonstruierten Scans. Die Porengrößen in den Konstrukten mit den symmetrischen Mustern konnten aufgrund einer Verflachungswirkung nicht die des Faserabstands erreichen. Die Dicke der Konstrukte war geringer als der Faserabstand mit einer weiteren einschränkenden Wirkung auf die Porenverteilung in den symmetrischen Konstrukten. µCT kann deshalb für die Qualitätssicherung von medizinischen Produkten, die mittels MEW hergestellt wurden, eingesetzt werden. Da die Methode zerstörungsfrei ist, könnte sie auch vor in vitro oder in vivo Versuchen verwendet werden. Kapitel 5 präsentiert eine Machbarkeitsstudie eines subkutanen in vivo Implantationsversuchs. Aus der Literatur ist zwar bekannt, dass MEW-Konstrukte bereits in vivo in Kleintierversuchen verwendet wurden, eine Analyse der Fremdkörperreaktion (FKR) zu solchen Implantaten wurde bisher jedoch noch nicht durchgeführt. FKR ist eine Immunreaktion gegen fremde, implantierte Materialien, einschließlich medizinischer Geräte, um den Wirt vor potenziellen Nebenwirkungen zu schützen. Allerdings könnte sie die Funktion verschiedener medizinischer Implantate beeinträchtigen Um dieser Fragestellung nachzugehen, wurde im Rahmen der vorliegenden Dissertation PCL mittels MEW zu Konstrukten mit 50 und 60 µm Fiberabstand in 0/90° bzw. 0/60/120° Ablagemuster verarbeitet. Diese Konstrukte wurden subkutan in immunkompetente, fremdgezüchtete Mäuse mit entsprechenden Kontrollen implantiert und nach 2, 4, 7 und 14 Tagen explantiert. Vor der Implantation wurde die Konstrukte ausführlich charakterisiert, gefolgt von einer vollen histopathologischen Analyse des FKR. Unabhängig von der Porengeometrie haben die Konstrukte eine deutliche Immunreaktion im Sinne einer Ansammlung von Fremdkörperriesenzellen um die Fasern der Konstrukte hervorgerufen. Hierbei wurden die Poren fast komplett verschlossen, ohne dass es zu einer Neovaskularisation kam. Es konnte nachgewiesen werden, dass die deutliche Immunantwort nicht durch das Material hervorgerufen wurde, da sie bei der Implantation von dichtem PCL-Film nicht beobachtet wurde. Eine Diskussion der Ergebnisse erfolgte unter Berücksichtigung aktueller Literatur zu klinischen Versuchen von flachen chirurgischen Netzen sowie porösen Hydrogel-basierten Implantaten mit vergleichbarer Porengröße. Abschließend wird die Arbeit in Kapitel 6 zusammengefasst und die wichtigsten Punkte rekapituliert. Der Fokus des Kapitels liegt hierbei auf dem zukünftigen Potential des MEW als Fabrikationsmethode für medizinische Produkte. KW - melt electrowriting KW - medical device KW - biomaterials KW - subcutaneous implanation KW - x-ray micro computed tomography Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235457 ER - TY - THES A1 - Wäldchen, Felix T1 - 3D Single Molecule Imaging In Whole Cells Enabled By Lattice Light-Sheet Illumination T1 - 3D Einzelmolekülbildgebung in ganzen Zellen ermöglicht durch Gitterlichtblattbeleuchtung N2 - Single molecule localization microscopy has seen a remarkable growth since its first experimental implementations about a decade ago. Despite its technical challenges, it is already widely used in medicine and biology and is valued as a unique tool to gain molecular information with high specificity. However, common illumination techniques do not allow the use of single molecule sensitive super-resolution microscopy techniques such as direct stochastic optical reconstruction microscopy (dSTORM) for whole cell imaging. In addition, they can potentially alter the quantitative information. In this thesis, I combine dSTORM imaging in three dimensions with lattice lightsheet illumination to gain quantitative molecular information from cells unperturbed by the illumination and cover slip effects. Lattice light-sheet illumination uses optical lattices for beam shaping to restrict the illumination to the detectable volume. I describe the theoretical background needed for both techniques and detail the experimental realization of the system as well as the software that I developed to efficiently evaluate the data. Eventually, I will present key datasets that demonstrate the capabilities of the developed microscope system with and without dSTORM. My main goal here was to use these techniques for imaging the neural cell adhesion molecule (NCAM, also known as CD56) in whole cells. NCAM is a plasma membrane receptor known to play a key role in biological processes such as memory and learning. Combining dSTORM and lattice light-sheet illumination enables the collection of quantitative data of the distribution of molecules across the whole plasma membrane, and shows an accumulation of NCAM at cell-cell interfaces. The low phototoxicity of lattice light-sheet illumination further allows for tracking individual NCAM dimers in living cells, showing a significant dependence of its mobility on the actin skeleton of the cell. N2 - Die Einzelmoleküllokalisationsmikroskopie hat seit der ersten experimentellen Umsetzung vor etwa 10 Jahren einen bemerkenswerten Aufschwung erfahren. Trotz des hohen technischen Anspruchs findet sie bereits weite Verbreitung in der Biologie und Medizin und wird als einzigartiges Werkzeug geschätzt, um molekulare Information mit hoher Spezifität zu erlangen. Dennoch erschweren die gebräuchlichen Beleuchtungsmethoden die Anwendung von Methoden der Einzelmoleküllokalisationsmikroskopie wie dSTORM (engl. direct stochastic optical reconstruction microscopy) auf das Volumen ganzer Zellen, denn hier kann die Beleuchtung selbst die quantitativen Daten beeinflussen. In dieser Arbeit kombiniere ich dreidimensionale dSTORM-Bildgebung mit Gitterlichtblattbeleuchtung (engl. lattice light-sheet illumination) um quantitative, molekulare Information ohne durch die Beleuchtung verursachte Störungen zu gewinnen. Die Gitterlichtblattbeleuchtung nutzt optische Gitter zur Strahlformung, um das beleuchtete Volumen auf das detektierbare Volumen zu beschränken. Ich stelle den nötigen, theoretischen Hintergrund für beide Methoden dar und beschreibe die experimentelle Umsetzung sowie die von mir zur effizienten Datenauswertung entwickelte Software. Schließlich präsentiere ich verschiedene Datensätze, die die Fähigkeiten des Systems mit und ohne dSTORM demonstrieren. Mein Hauptziel war hierbei, beide Methoden zu nutzen, um das neuronale Zelladhäsionsmolekül (NCAM, engl. neural cell adhesion molecule) in ganzen Zellen abzubilden. NCAM (auch bekannt als CD56) ist ein Rezeptor auf der Plasmembran, der für seine Schlüsselrolle im Zusammenhang mit biologischen Prozessen wie Lernen und Gedächtnis bekannt ist. Die Kombination von dSTORM und Gitterlichtblattbeleuchtung ermöglicht das sammeln quantitativer Daten der Verteilung über die komplette Plasmamembran, wobei sich eine Akkumulation an Zell-Zell Kontaktflächen zeigt. Die niedrige Photoschädigung der Gitterlichtblattbeleuchtung ermöglicht weiterhin das Verfolgen von einzelnen NCAM-Dimeren in lebenden Zellen. Dort zeigt sich eine signifikante Abhängigkeit ihrer Mobilität vom Aktinskelett der Zelle. KW - Einzelmolekülmikroskopie KW - Optik KW - Light-Sheet KW - Lattice Light-Sheet KW - dSTORM KW - Single Molecule Imaging KW - Localization Microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207111 ER - TY - THES A1 - Wolpert, Daniel T1 - Quantum Control of Photoinduced Chemical Reactions T1 - Quantenkontrolle von photoinduzierten chemischen Reaktionen N2 - The control of quantum mechanical processes, especially the selective manipulation of photochemical reactions by shaped fs laser pulses was successfully demonstrated in many experiments in the fields of physics, chemistry and biology. In this work, attention is directed to the control of two systems that mark a bridge to real synthetic chemistry. In a liquid phase environment the outcome of the photo-induced Wolff rearrangement of an industrially relevant diazonaphthoquinone compound, normally used in photoresists (e.g. Novolak) was optimized using shaped fs laser pulses. In the second series of experiments chemical reactions on a catalyst metal surface which comprise laser induced molecular bond formation channels were selectively manipulated for the first time. The control of liquid phase reactions necessitates adequate spectroscopic signals that are characteristic for the formed product species. Therefore, a pump-probe setup for transient absorption spectroscopy in the mid-infrared for the purpose of investigating ultrafast structural changes of molecules during photoreactions was constructed. This versatile setup enables to monitor structural changes of molecules in the liquid phase and to find appropriate feedback signals for the control of these processes. Prior to quantum control experiments, the photoinduced Wolff-rearrangement reaction of 2-diazo-1-naphthoquinone (DNQ) dissolved in water and methanol was thoroughly investigated. Steady state absorption measurements in the mid-infrared in combination with quantum chemical density functional theory (DFT) calculations revealed the characteristic vibrational bands of DNQ and of possible products. A mid-infrared transient absorption study was performed, to illuminate the structural dynamics of the ultrafast rearrangement reaction of DNQ. The experimental observations indicate, that the Wolff rearrangement reaction of DNQ proceeds within 300 fs. A model for the relaxation dynamics of the ketene photoproduct and DNQ after photoexcitation can be deduced that fits the measured data very well. The object of the quantum control experiments on DNQ was the improvement of the ketene yield. It was shown that the ketene formation after Wolff rearrangement of DNQ is very sensitive to the shape of the applied excitation laser pulses. The variation of single parameters, like the linear chirp as well as the pulse separation of colored double pulses lead to the conclusion that the well known intrapulse dumping mechanism is responsible for the impact of the frequency ordering within the excitation pulse on the photoproduct yield. Adaptive optimizations using a closed learning loop basically lead to the same result. Adaptive fs quantum control was also applied to surface reactions on a catalyst metal surface for the first time. Therefore, the laser-induced catalytic reactions of carbon monoxide (CO) and hydrogen (H2) on a Pd(100) single crystal surface were studied. This photochemical reaction initiated with fs laser pulses has not been observed before. Several product molecules could be synthesized, among them also species (e.g. CH^3+) for whose formation three particles are involved. The systematic variation of different parameters showed that the reactions are sensitive to the catalyst surface, the composition of the adsorbate and to the laser properties. A pump-probe study revealed that they occur on an ultrafast time scale. These catalytic surface reactions were then investigated and improved with phaseshaped fs laser pulses. By applying a feedback optimal control scheme, the reaction outcome could be successfully manipulated and the ratio of different reaction channels could be selectively controlled. Evidence has been found that the underlying control mechanism is nontrivial and sensitive to the specific conditions on the surface. The experiments shown here represent the first successful experiment on adaptive fs quantum control of a chemical reaction between adsorbate molecules on a surface. In contrast to previous quantum control experiments, reaction channels comprising the formation of new molecular bonds rather than the cleavage of already existing bonds are controlled. This work successfully showed that quantum control can be extended to systems closer to situations encountered in synthetic chemistry as was demonstrated in the two examples of the optimization of a complicated rearrangement reaction and the selective formation of chemical bonds with shaped fs laser pulses. N2 - Die Kontrolle quantenmechanischer Prozesse, insbesondere die selektive Manipulation photochemischer Reaktionen mit Hilfe geformter fs-Laserpulse wurde auf den Gebieten der Physik, Chemie und Biologie in vielen Experimenten erfolgreich gezeigt. In dieser Arbeit wird das Augenmerk auf die Kontrolle zweier Systeme gerichtet, die eine Brücke zur synthetischen Chemie darstellen. In der flüssigen Phase wurde das Resultat der photoinduziertenWolff Umlagerung einer industriell relevanten Diazonaphthoquinone Verbindung, die gewöhnlich in Photolacken (z.B. Novolak) Verwendung findet, durch geformte fs-Laserpulse optimiert. In der zweiten Reihe von Experimenten wurden chemische Reaktionen auf einer Katalysator-Metalloberfläche, die Kanäle mit laserinduzierter molekularer Bindungsknüpfung beinhalten, zum ersten Mal selektiv beeinflusst. Für die Kontrolle von Reaktionen in der flüssigen Phase benötigt man geeignete spektroskopische Messsignale, die charakteristisch für die gebildeten Produktspezies sind. Zu diesem Zweck wurde ein Versuchsaufbau für Anrege-Abfrage Experimente zur transienten Absorptionsspektroskopie im mittleren Infrarot aufgebaut, um ultraschnelle strukturelle Veränderungen von Molekülen während Photoreaktionen zu untersuchen. Dieser vielseitige Versuchsaufbau ermöglicht die Messung struktureller Veränderungen in Molekülen in flüssiger Phase und damit das Auffinden geeigneter Rückkopplungssignale zur Kontrolle dieser Prozesse. Vor den Quantenkontrollexperimenten wurde die photoinduzierte Wolff Umlagerung von 2-Diazo-1-Naphthoquinone (DNQ) in den Lösungsmitteln Wasser und Methanol sorgfältig untersucht. Lineare Absorptionsmessungen im mittleren Infrarot in Verbindung mit quantenchemischen Dichtefunktionaltheorie (DFT) Rechnungen lieferten die charakteristischen Schwingungsbanden von DNQ und möglichen Photoprodukten. Untersuchungen mit transienter Absorptionsspektroskopie im mittleren Infrarot wurden durchgeführt, um die strukturelle Dynamik der ultraschnellen Umlagerungsreaktion von DNQ zu beleuchten. Die experimentellen Beobachtungen deuten darauf hin, dass die Wolff Umlagerung von DNQ innnerhalb von 300 fs abläuft. Ein Modell für die Relaxationsdynamik des Keten Photoprodukts und DNQ, dass die gemessenen Daten sehr gut beschreibt wurde abgeleitet. Das Ziel der Quantenkontrollexperimente an DNQ war die Erhöhung der Ketenausbeute. Es wurde gezeigt, dass die Bildung des Keten nach der Wolff Umlagerung des DNQ empfindlich auf die Form der Anregungspulse reagiert. Die Variation einzelner Parameter, wie des linearen Chirps sowie des Pulsabstands von farbigen Doppelpulsen führen zu dem Schluss, dass der gut bekannte Intrapuls-Abregemechanismus verantwortlich für den Einfluss der Frequenzfolge innerhalb des Anregepulses auf die Ausbeute des Photoprodukts ist. Adaptive Optimierungen führen zum gleichen Ergebnis. Adaptive Quantenkontrolle wurde auch erstmalig auf Oberflächenreaktionen auf einer Katalysator-Metalloberfläche angewendet. Dazu wurden die laserinduzierten katalytischen Oberflächenreaktionen von Kohlenmonoxid (CO) und Wasserstoff (H2) auf einer Pd(100) Einkristalloberfläche untersucht. Diese photochemische Reaktion, die durch fs-Laserpulse ausgelöst wird wurde bisher noch nicht beobachtet. Mehrere Produktmoleküle konnten synthetisiert werden, darunter auch Moleküle für deren Bildung mindestens drei Eduktmoleküle zusammenkommen und reagieren müssen. Die systematische Änderung verschiedener Parameter zeigte, dass die Reaktionen von der Katalysatoroberfläche, der Zusammensetzung des Adsorbats und den Eigenschaften der fs-Laserpulse abhängen. Eine Anrege-Abfrage Untersuchung machte deutlich, dass die Reaktionen auf einer ultrakurzen Zeitskala ablaufen. Diese katalytischen Oberflächenreaktionen wurden im Anschluss mit Hilfe von phasengeformten fs-Laserpulsen weiter untersucht und gezielt gesteuert. In adaptiven Quantenkontrollexperimenten konnte das Reaktionsergebnis sowie das Verhältnis unterschiedlicher Reaktionskanäle selektiv manipuliert werden. Es wurden Hinweise gefunden, dass der zugrundeliegende Kontrollmechanismus nichttrivial ist und von den genauen Bedingungen auf der Oberfläche abhängt. Diese Experimente stellen die ersten erfolgreichen adaptiven Quantenkontrollexperimente an einer chemischen Reaktion zwischen Adsorbatmolekülen auf einer Oberfläche dar. Im Gegensatz zu bisherigen Quantenkontrollexperimenten wurden hierbei Reaktionskanäle optimiert, die die Formung und nicht nur den Bruch einer molekularen Bindung umfassen. Diese Arbeit zeigt, dass die Methoden der Quantenkontrolle auf Systeme, die den Situationen in der synthetischen Chemie nahekommen, erfolgreich angewendet werden können, wie mit den zwei Beispielen, der Optimierung einer komplizierten Umlagerungsreaktion und der selektiven Bildung chemischer Bindungen mit geformten fs-Laserpulsen demonstriert wurde. KW - Nichtlineare Spektroskopie KW - Infrarotspektroskopie KW - Massenspektrometrie KW - Laserchemie KW - Femtosekundenpulse KW - Pulsformung KW - Quantenkontrolle KW - quantum control KW - pulse shaping KW - femtosecond pulses KW - time-of-flight mass spectrometry KW - infrared spectroscopy KW - nonlinear spectroscopy Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27171 ER - TY - THES A1 - Wolf, Nadine T1 - Synthese, Charakterisierung und Modellierung von klassischen Sol-Gel- und Nanopartikel-Funktionsschichten auf der Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid T1 - Synthesis, characterization and modeling of classical sol gel and nanoparticle functional layers on the basis of indium tin oxide and alumnium zinc oxide N2 - Das Ziel dieser Arbeit ist neben der Synthese von Sol-Gel-Funktionsschichten auf der Basis von transparent leitfähigen Oxiden (transparent conducting oxides, TCOs) die umfassende infrarotoptische und elektrische Charakterisierung sowie Modellierung dieser Schichten. Es wurden sowohl über klassische Sol-Gel-Prozesse als auch über redispergierte Nanopartikel-Sole spektralselektive Funktionsschichten auf Glas- und Polycarbonat-Substraten appliziert, die einen möglichst hohen Reflexionsgrad im infraroten Spektralbereich und damit einhergehend einen möglichst geringen Gesamtemissionsgrad sowie einen niedrigen elektrischen Flächenwiderstand aufweisen. Zu diesem Zweck wurden dotierte Metalloxide, nämlich einerseits Zinn-dotiertes Indiumoxid (tin doped indium oxide, ITO) und andererseits Aluminium-dotiertes Zinkoxid (aluminum doped zinc oxide, AZO)verwendet. Im Rahmen dieser Arbeit wurden vertieft verschiedene Parameter untersucht, die bei der Präparation von niedrigemittierenden ITO- und AZO-Funktionsschichten im Hinblick auf die Optimierung ihrer infrarot-optischen und elektrischen Eigenschaften sowie ihrer Transmission im sichtbaren Spektralbereich von Bedeutung sind. Neben der Sol-Zusammensetzung von klassischen Sol-Gel-ITO-Beschichtungslösungen wurden auch die Beschichtungs- und Ausheizparameter bei der Herstellung von klassischen Sol-Gel-ITO- sowie -AZO-Funktionsschichten charakterisiert und optimiert. Bei den klassischen Sol-Gel- ITO-Funktionsschichten konnte als ein wesentliches Ergebnis der Arbeit der Gesamtemissionsgrad um 0.18 auf 0.17, bei in etwa gleichbleibenden visuellen Transmissionsgraden und elektrischen Flächenwiderständen, reduziert werden, wenn anstelle von (optimierten) Mehrfach-Beschichtungen Einfach-Beschichtungen mit einer schnelleren Ziehgeschwindigkeit anhand des Dip-Coating-Verfahrens hergestellt wurden. Mit einer klassischen Sol-Gel-ITO-Einfach-Beschichtung, die mit einer deutlich erhöhten Ziehgeschwindigkeit von 600 mm/min gedippt wurde, konnte mit einem Wert von 0.17 der kleinste Gesamtemissionsgrad dieser Arbeit erzielt werden. Die Gesamtemissionsgrade und elektrischen Flächenwiderstände von klassischen Sol-Gel-AZOFunktionsschichten konnten mit dem in dieser Arbeit optimierten Endheizprozess deutlich gesenkt werden. Bei Neunfach-AZO-Beschichtungen konnten der Gesamtemissionsgrad um 0.34 auf 0.50 und der elektrische Flächenwiderstand um knapp 89 % auf 65 Ω/sq verringert werden. Anhand von Hall-Messungen konnte darüber hinaus nachgewiesen werden, dass mit dem optimierten Endheizprozess, der eine erhöhte Temperatur während der Reduzierung der Schichten aufweist, mit N = 4.3·1019 cm-3 eine etwa doppelt so hohe Ladungsträgerdichte und mit µ = 18.7 cm2/Vs eine etwa drei Mal so große Beweglichkeit in den Schichten generiert wurden, im Vergleich zu jenen Schichten, die nach dem alten Endheizprozess ausgehärtet wurden. Das deutet darauf hin, dass bei dem optimierten Heizschema sowohl mehr Sauerstofffehlstellen und damit eine höhere Ladungsträgerdichte als auch Funktionsschichten mit einem höheren Kristallisationsgrad und damit einhergehend einer höheren Beweglichkeit ausgebildet werden. Ein Großteil der vorliegenden Arbeit behandelt die Optimierung und Charakterisierung von ITO-Nanopartikel-Solen bzw. -Funktionsschichten. Neben den verwendeten Nanopartikeln, dem Dispergierungsprozess, der Beschichtungsart sowie der jeweiligen Beschichtungsparameter und der Nachbehandlung der Funktionsschichten, wurde erstmals in einer ausführlichen Parameterstudie die Sol-Zusammensetzung im Hinblick auf die Optimierung der infrarot-optischen und elektrischen Eigenschaften der applizierten Funktionsschichten untersucht. Dabei wurde insbesondere der Einfluss der verwendeten Stabilisatoren sowie der verwendeten Lösungsmittel auf die Schichteigenschaften charakterisiert. Im Rahmen dieser Arbeit wird dargelegt, dass die exakte Zusammensetzung der Nanopartikel-Sole einen große Rolle spielt und die Wahl des verwendeten Lösungsmittels im Sol einen größeren Einfluss auf den Gesamtemissionsgrad und die elektrischen Flächenwiderstände der applizierten Schichten hat als die Wahl des verwendeten Stabilisators. Allerdings wird auch gezeigt, dass keine pauschalen Aussagen darüber getroffen werden können, welcher Stabilisator oder welches Lösungsmittel in den Nanopartikel-Solen zu Funktionsschichten mit kleinen Gesamtemissionsgraden und elektrischen Flächenwiderständen führt. Stattdessen muss jede einzelne Kombination von verwendetem Stabilisator und Lösungsmittel empirisch getestet werden, da jede Kombination zu Funktionsschichten mit anderen Eigenschaften führt. Zudem konnte im Rahmen dieser Arbeit erstmals stabile AZO-Nanopartikel-Sole über verschiedene Rezepte hergestellt werden. Neben der Optimierung und Charakterisierung von ITO- und AZO- klassischen Sol-Gel- sowie Nanopartikel-Solen und -Funktionsschichten wurden auch die infrarot-optischen Eigenschaften dieser Schichten modelliert, um die optischen Konstanten sowie die Schichtdicken zu bestimmen. Darüber hinaus wurden auch kommerziell erhältliche, gesputterte ITO- und AZO-Funktionsschichten modelliert. Die Reflexionsgrade dieser drei Funktionsschicht-Typen wurden einerseits ausschließlich mit dem Drude-Modell anhand eines selbstgeschriebenen Programmes in Sage modelliert, und andererseits mit einem komplexeren Fit-Modell, welches in der kommerziellen Software SCOUT aus dem erweiterten Drude-Modell, einem Kim-Oszillator sowie dem OJL-Modell aufgebaut wurde. In diesem Fit-Modell werden auch die Einflüsse der Glas-Substrate auf die Reflexionsgrade der applizierten Funktionsschichten berücksichtigt und es können die optischen Konstanten sowie die Dicken der Schichten ermittelt werden. Darüber hinaus wurde im Rahmen dieser Arbeit ein Ellipsometer installiert und geeignete Fit-Modelle entwickelt, anhand derer die Ellipsometer-Messungen ausgewertet und die optischen Konstanten sowie Schichtdicken der präparierten Schichten bestimmt werden können. N2 - The aim of this thesis is on the one hand the synthesis of sol-gel functional layers on the basis of transparent conducting oxides (TCOs) and on the other hand a comprehensive infrared-optical and electrical characterization as well as modeling of these layers. Spectrally selective coatings have been prepared with the classical sol-gel route as well as with redispersed nanoparticle sols on glass and polycarbonate substrates and these coatings should have a reflectance in the infrared spectral range which is as high as possible and therefore a total emittance and an electrical sheet resistance which are as small as possible. For this purpose tin doped indium oxide (ITO) and aluminum doped zinc oxide (AZO) have been used as doped metal oxides. Within this thesis several parameters have been investigated in-depth which play a decisive role in the preparation of ITO and AZO low emissivity coatings, in order to prepare such coatings with optimized infrared-optical and electrical properties as well as visual transmittances. Besides the composition of the classical sol-gel ITO coating solutions, also the parameters of the coating as well as the heating processes have been characterized and optimized in the manufacture of classical sol-gel ITO and AZO functional layers. As a significant result the total emittance of classical sol-gel ITO functional layers could be reduced by 0.18 to 0.17 while the visual transmittance and electrical sheet resistances stay approximately the same, if just one-layered coatings are applied with a higher withdrawal speed with the dip coating technique instead of (optimized) multi-layered coatings. With a classical sol-gel ITO single coating, which has been produced with a withdrawal speed of 600 mm/min, the smallest total emittance of this work could be realized with 0.17. The total emittances and electrical sheet resistances of classical sol-gel AZO functional layers were reduced drastically in this work by using the optimized final heating process. The total emittance could be reduced by 0.34 to 0.50 and the electrical sheet resistance by 89 % to 65Ω/sq with a coating which consists of nine single layers. On the basis of Hall measurements it has been shown that coatings which were treated with the optimized heating process (which exhibits a higher temperature during the reducing treatment of the coatings) show a higher charge carrier density as well as a higher mobility than those coatings treated with the old heating process. With the optimized heating process the ninelayered coatings exhibit a charge carrier density of N = 4.3·1019 cm-3 which is approximately twice as high and a mobility of µ = 18.7 cm2/Vs which is about three times higher than the values of coatings which have been heated with the old process. This indicates that with the optimized heating process more oxygen vacancies and, associated therewith a higher charge carrier density as well as a higher crystallinity of the layer and thus a higher mobility are generated. One focus of the presented work lies on the optimization and characterization of ITO redispersed nanoparticle sols and functional layers respectively. In addition to the used nanoparticles, the dispersion process, the coating type with the respective coating parameters and post-treatments of the functional layers also a detailed parameter study has been done. This parameter study examined the composition of the nanoparticle sols with a view to the optimization of the infrared-optical and electrical properties of the applied coatings. The coating properties have been studied in particularly with regard to the influence of the used stabilizers and solvents respectively. In this work it will be shown, that the accurate composition of the nanoparticle sols plays a decisive role and the choice of the used solvents has a bigger impact on the coating properties than the choice of the used stabilizers. However, it will also be shown, that no general statements can be made which stabilizers or which solvents within the sols lead to coatings which have small total emittances and small electrical sheet resistances. Instead each combination of used stabilizer and used solvent has to be empirically tested since each combination leads to coatings with different properties. Furthermore stable AZO nanoparticle sols based on several formulas have been developed for the first time. Besides the optimization and characterization of ITO and AZO classical sol-gel as well as nanoparticle sols and functional layers, also the infrared-optical properties of these coatings have been modeled in order to determine the optical constants as well as the coating thicknesses. Furthermore also commercially available sputtered ITO and AZO coatings have been modeled. The reflectances of these three types of coatings have been modeled on the one hand by using only the Drude model within a self-written program in the software Sage. On the other hand these coatings have been modeled with more complex fitting models within the commercially available software called SCOUT. These more complex fitting models consist of the extended Drude model, a Kim oscillator and an OJL model and they also take the influence of the glass substrates on the reflectances of the applied coatings into account. By using these fitting models, the optical constants of the applied coatings and the coating thicknesses can be obtained. In addition an Ellipsometer has been installed as part of this work and suitable fitting models have been developed. These models can be used for analyzing the Ellipsometer measurements in order to determine the optical constants and the coating thicknesses of the coatings applied. KW - Transparent-leitendes Oxid KW - Sol-Gel-Verfahren KW - Beschichtung KW - Funktionswerkstoff KW - Sol-Gel-Synthese KW - ITO KW - AZO KW - redispergierte Nanopartikel-Sole KW - Drude-Modell KW - sol gel KW - redispersed nanoparticle sol KW - Drude model KW - Charakterisierung KW - Modellierung KW - Physikalische Schicht KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112416 ER - TY - THES A1 - Winterfeldt, Carsten T1 - Generation and control of high-harmonic radiation T1 - Erzeugung und Kontrolle Hoher Harmonischer N2 - High-harmonic generation provides a powerful source of ultrashort coherent radiation in the XUV and soft-x-ray range, which also allows for the production of attosecond light pulses. Based on the unique properties of this new radiation it is now possible to perform time-resolved spectroscopy at high excitation energies, from which a wide field of seminal discoveries can be expected. Since the exploration and observation of the corresponding processes in turn are accompanied by the desire to control them, this work deals with new ways to manipulate and characterize the properties of these high-harmonic-based soft-x-ray pulses. After introductory remarks this work first presents a comprehensive overview over recent developments and achievements on the field of the control of high-harmonic radiation in order to classify the experimental results obtained in this work. These results include the control of high-harmonic radiation both by temporally shaping and by manipulating the spatial properties of the fundamental laser pulses. In addition, the influence of the conversion medium and of the setup geometry (gas jet, gas-filled hollow fiber) was investigated. Using adaptive temporal pulse shaping of the driving laser pulse by a deformable mirror, this work demonstrates the complete control over the XUV spectrum of high harmonics. Based on a closed-loop optimization setup incorporating an evolutionary algorithm, it is possible to generate arbitrarily shaped spectra of coherent soft-x-ray radiation in a gas-filled hollow fiber. Both the enhancement and suppression of narrowband high-harmonic emission in a selected wavelength region as well as the enhancement of coherent soft-x-ray radiation over a selectable extended range of harmonics (multiple harmonics) can be achieved. Since simulations that do not take into account spatial properties such as propagation effects inside a hollow fiber cannot reproduce the experimentally observed high contrast ratios between adjacent harmonics, a feedback-controlled adaptive two-dimensional spatial pulse shaper was set up to examine selective fiber mode excitation and the optimization of high-harmonic radiation in such a geometry. It is demonstrated that different fiber modes contribute to harmonic generation and make the high extent of control possible. These results resolve the long-standing issue about the controllability of high-harmonic generation in free-focusing geometries such as gas jets as compared to geometries where the laser is guided. Temporal pulse shaping alone is not sufficient. It was possible to extend the cutoff position of harmonics generated in a gas jet, however, selectivity cannot be achieved. The modifications of the high-harmonic spectrum have direct implications for the time structure of the harmonic radiation, including the possibility for temporal pulse shaping on an attosecond time scale. To this end, known methods for the temporal characterization of optical pulses and high-harmonic pulses (determination of the harmonic chirp on femtosecond and attosecond time scales) were introduced. The experimental progress in this work comprises the demonstration of different setups that are in principle suitable to determine the time structure of shaped harmonic pulses based on two-photon two-color ionization cross-correlation techniques. Photoelectron spectra of different noble gases generated by photoionization with high-harmonic radiation reproduce the spin-orbit splitting of the valence electrons and prove the satisfactory resolution of our electron time-of-flight spectrometer for the temporal characterization of high harmonics. Unfortunately no positive results for this part could be achieved so far, which can probably be attributed mainly to the lack of the focusability of the high harmonics and to the low available power of our laser system. However, we have shown that shaping the high-harmonic radiation in the spectral domain must result in modifications of the time structure on an attosecond time scale. Therefore this constitutes the first steps towards building an attosecond pulse shaper in the soft-x-ray domain. Together with the ultrashort time resolution, high harmonics open great possibilities in the field of time-resolved soft-x-ray spectroscopy, for example of inner-shell transitions. Tailored high-harmonic spectra as generated in this work and shaped attosecond pulses will represent a multifunctional toolbox for this kind of research. N2 - Die Erzeugung von Hohen Harmonischen stellt eine leistungsfähige Quelle ultrakurzer und kohärenter Strahlung im extremen Ultraviolett- und weichen Röntgenbereich dar, die auch die Erzeugung von Attosekundenlichtimpulsen erlaubt. Durch die einzigartigen Eigenschaften dieser neuen Strahlung ist es nun möglich, zeitaufgelöste Spektroskopie mit hohen Anregungsenergien durchzuführen, was eine Vielzahl bahnbrechender Entdeckungen erwarten lässt. Da die Erforschung und Beobachtung entsprechender Prozesse gekoppelt sind mit dem Wunsch, diese zu kontrollieren, beschäftigt sich die vorliegende Arbeit mit Wegen, die Eigenschaften dieser Röntgenpulse aus Hohen Harmonischen zu manipulieren und zu charakterisieren. Nach einleitenden Bemerkungen gibt diese Arbeit zunächst einen umfassenden Überblick über neueste Entwicklungen und Ergebnisse auf dem Gebiet der Kontrolle von Hohen Harmonischen, um die in dieser Arbeit erreichten experimentellen Ergebnisse einordnen zu können. Diese beinhalten die Kontrolle der Strahlung von Hohen Harmonischen sowohl durch die zeitliche Formung als auch durch die Manipulation der räumlichen Eigenschaften der fundamentalen Laserpulse. Untersucht wurde auch der Einfluss des Konversionsmediums und der Geometrie des Aufbaus (Gasstrahl, gasgefüllte Hohlfaser). Durch adaptive zeitliche Pulsformung der erzeugenden Laserpulse mit Hilfe eines deformierbaren Spiegels zeigt die vorliegende Arbeit die komplette Kontrolle über das XUV-Spektrum von Hohen Harmonischen. Basierend auf einem Optimierungsexperiment mit einer Rückkopplungsschleife und einem evolutionären Algorithmus ist es möglich, willkürlich geformte Spektren von kohärenter Strahlung im weichen Röntgenbereich in einer gasgefüllten Hohlfaser zu erzeugen. Sowohl die Steigerung und Unterdrückung von schmalbandiger Hohen-Harmonischen-Strahlung über einen ausgewählten Wellenlängenbereich als auch die Verstärkung von kohärenter weicher Röntgenstrahlung über einen wählbaren ausgedehnten Bereich von Harmonischen können erreicht werden. Da Simulationen ohne die Berücksichtigung von räumlichen Eigenschaften wie zum Beispiel Propagationseffekten in einer Hohlfaser die experimentell beobachteten hohen Kontrastverhältnisse zwischen benachbarten Harmonischen nicht reproduzieren konnten, wurde ein rückkopplungsgesteuerter zweidimensionaler räumlicher Pulsformer in Betrieb genommen, um die gezielte Anregung von Fasermoden und die Optimierung von Hohen Harmonischen in einer solchen Geometrie zu untersuchen. Es wird gezeigt, dass verschiedene Fasermoden zur Erzeugung von Harmonischen beitragen und erst das hohe Maß an Kontrolle ermöglichen. Diese Ergebnisse lösen eine lang bestehende Frage nach der Kontrollierbarkeit der Erzeugung von Hohen Harmonischen in Geometrien mit einem freien Fokus wie zum Beispiel in Gasstrahlen im Vergleich zu Geometrien, in denen der Laser geführt wird. Zeitliche Pulsformung allein reicht nicht aus. In einem Gasstrahl konnten zwar beispielsweise die höchsten erzeugten Harmonischen zu kürzeren Wellenlängen hin verschoben werden, eine Selektivität ist jedoch nicht möglich. Die Modifizierungen des Spektrums von Hohen Harmonischen haben direkte Auswirkungen auf die Zeitstruktur der Harmonischen-Strahlung, einschließlich der Möglichkeit für zeitliche Pulsformung im Attosekundenbereich. Dazu wurden bekannte Methoden zur zeitlichen Charakterisierung von optischen Pulsen und Hohen-Harmonischen-Pulsen vorgestellt. Der experimentelle Fortschritt in dieser Arbeit beinhaltet die Demonstration von verschiedenen Aufbauten, die im Prinzip geeignet sind, die Zeitstruktur von geformten Harmonischen-Pulsen mit Kreuzkorrelationsmethoden durch Zwei-Photonen-zwei-Farben-Ionisation zu bestimmen. Photoelektronenspektren verschiedener Edelgase, die durch Photoionisation mit der Hohen-Harmonischen-Strahlung erzeugt wurden, können die Spin-Bahn-Aufspaltung der Valenzelektronen reproduzieren und belegen die ausreichende Auflösung unseres Elektronen-Flugzeit-Spektrometers zur zeitlichen Charakterisierung von Hohen Harmonischen. Leider konnten bislang keine positiven Ergebnisse zu diesem Teil erzielt werden, was sich wohl hauptsächlich auf die fehlende Fokussierbarkeit der Harmonischen und die zu niedrige zur Verfügung stehende Leistung unseres Lasersystems zurückführen lässt. Wir haben jedoch gezeigt, dass die Formung der Hohen-Harmonischen-Strahlung im Spektralbereich Veränderungen der Zeitstruktur auf Attosekundenzeitskalen nach sich ziehen muss. Dies stellt daher erste Schritte in Richtung des Baus eines Attosekundenpulsformers im weichen Röntgenbereich dar. Zusammen mit der ultrakurzen Zeitauflösung eröffnen Hohe Harmonische daher viele Möglichkeiten auf dem Gebiet der zeitaufgelösten Spektroskopie im weichen Röntgenbereich, beispielsweise bei Innenschalen-Übergängen. Maßgeschneiderte Spektren von Hohen Harmonischen, wie sie in dieser Arbeit erzeugt werden konnten, und geformte Attosekundenpulse werden dabei vielseitige Werkzeuge darstellen. KW - Frequenzvervielfachung KW - Ultrakurzer Lichtimpuls KW - Attosekundenbereich KW - Adaptivregelung KW - Erzeugung Hoher Harmonischer KW - Wechselwirkung intensiver Laserpulse mit Materie KW - adaptive Kontrolle KW - Pulsformung KW - ultraschnelle Optik KW - high-harmonic generation KW - high-intensity laser-matter interaction KW - adaptive control KW - pulse shaping KW - ultrafast optics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20309 ER - TY - THES A1 - Winter, Patrick T1 - Neue Methoden zur Quantitativen Kardiovaskulären MR-Bildgebung T1 - New methods for quantitative cardiovascular magnetic resonance imaging N2 - Herzkreislauferkrankungen stellen die häufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen frühzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten lässt. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldstärken (>3 T) sehr störanfällig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden benötigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen lässt, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden ermöglichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte darüber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung übertragen lassen. N2 - Cardiovascular diseases are one of the main causes of death in western countries. Hence, the development of non-invasive imaging techniques using Magnetic Resonance Imaging (MRI) is very important for early detection of these illnesses and for examination of the biological mechanisms. In the past years genetically modified mouse models have proven to be great assets, since they allow the development of new imaging techniques and to investigate the progress of cardiovascular diseases in time lapse. The main challenge of murine MRI is the high heart rate und the fast respiration. Hence, synchronization of the measurement with cardiac motion and breathing by using cardiac and respiration signals is required. Most imaging techniques use ECG leads for synchronization with the heartbeat, however, these probes are prone to disturbances at high magnetic field strengths (>3 T). In this work new imaging techniques were developed that do not use external cardiac and respiration signals but the MRI signal itself for motion synchronization. With these techniques new methods for flow quantification und 3D imaging could be developed for qualitative and quantitative measurements in the murine arteries. Furthermore, a new method for quantification of the longitudinal relaxation time T1 in the murine heart could be developed. The methods presented in this work enable more robust measurements of the cardiovascular system. In the last chapter it could be shown that the imaging techniques developed in the mouse can also be transferred to human MRI. KW - Kernspintomografie KW - Kardiovaskuläres System KW - Flussbildgebung KW - 3D-Bildgebung KW - Selbstnavigation KW - T1 KW - UTE KW - Maus KW - Aorta KW - Herzmuskel KW - Herzschlag Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174023 ER - TY - THES A1 - Winnerlein, Martin T1 - Molecular Beam Epitaxy and Characterization of the Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Molekularstrahlepitaxie und Charakterisierung des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\) N2 - The subject of this thesis is the fabrication and characterization of magnetic topological insulator layers of (V,Bi,Sb)\(_2\)Te\(_3\) exhibiting the quantum anomalous Hall effect. A major task was the experimental realization of the quantum anomalous Hall effect, which is only observed in layers with very specific structural, electronic and magnetic properties. These properties and their influence on the quantum anomalous Hall effect are analyzed in detail. First, the optimal conditions for the growth of pure Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) crystal layers and the resulting structural quality are studied. The crystalline quality of Bi\(_2\)Te\(_3\) improves significantly at higher growth temperatures resulting in a small mosaicity-tilt and reduced twinning defects. The optimal growth temperature is determined as 260\(^{\circ}\)C, low enough to avoid desorption while maintaining a high crystalline quality. The crystalline quality of Sb\(_2\)Te\(_3\) is less dependent on the growth temperature. Temperatures below 230\(^{\circ}\)C are necessary to avoid significant material desorption, though. Especially for the nucleation on Si(111)-H, a low sticking coefficient is observed preventing the coalescence of islands into a homogeneous layer. The influence of the substrate type, miscut and annealing sequence on the growth of Bi\(_2\)Te\(_3\) layers is investigated. The alignment of the layer changes depending on the miscut angle and annealing sequence: Typically, layer planes align parallel to the Si(111) planes. This can enhance the twin suppression due to transfer of the stacking order from the substrate to the layer at step edges, but results in a step bunched layer morphology. For specific substrate preparations, however, the layer planes are observed to align parallel to the surface plane. This alignment avoids displacement at the step edges, which would cause anti-phase domains. This results in narrow Bragg peaks in XRD rocking curve scans due to long-range order in the absence of anti-phase domains. Furthermore, the use of rough Fe:InP(111):B substrates leads to a strong reduction of twinning defects and a significantly reduced mosaicity-twist due to the smaller lattice mismatch. Next, the magnetically doped mixed compound V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) is studied in order to realize the quantum anomalous Hall effect. The addition of V and Bi to Sb\(_2\)Te\(_3\) leads to efficient nucleation on the Si(111)-H surface and a closed, homogeneous layer. Magneto-transport measurements of layers reveal a finite anomalous Hall resistivity significantly below the von Klitzing constant. The observation of the quantum anomalous Hall effect requires the complete suppression of parasitic bulklike conduction due to defect induced carriers. This can be achieved by optimizing the thickness, composition and growth conditions of the layers. The growth temperature is observed to strongly influence the structural quality. Elevated temperatures result in bigger islands, improved crystallographic orientation and reduced twinning. On the other hand, desorption of primarily Sb is observed, affecting the thickness, composition and reproducibility of the layers. At 190\(^{\circ}\)C, desorption is avoided enabling precise control of layer thickness and composition of the quaternary compound while maintaining a high structural quality. It is especially important to optimize the Bi/Sb ratio in the (V,Bi,Sb)\(_2\)Te\(_3\) layers, since by alloying n-type Bi\(_2\)Te\(_3\) and p-type Sb\(_2\)Te\(_3\) charge neutrality is achieved at a specific mixing ratio. This is necessary to shift the Fermi level into the magnetic exchange gap and fully suppress the bulk conduction. The Sb content x furthermore influences the in-plane lattice constant a significantly. This is utilized to accurately determine x even for thin films below 10 nm thickness required for the quantum anomalous Hall effect. Furthermore, x strongly influences the surface morphology: with increasing x the island size decreases and the RMS roughness increases by up to a factor of 4 between x = 0 and x = 1. A series of samples with x varied between 0.56-0.95 is grown, while carefully maintaining a constant thickness of 9 nm and a doping concentration of 2 at.% V. Magneto-transport measurements reveal the charge neutral point around x = 0.86 at 4.2 K. The maximum of the anomalous Hall resistivity of 0.44 h/e\(^2\) is observed at x = 0.77 close to charge neutrality. Reducing the measurement temperature to 50 mK significantly increases the anomalous Hall resistivity. Several samples in a narrow range of x between 0.76-0.79 show the quantum anomalous Hall effect with the Hall resistivity reaching the von Klitzing constant and a vanishing longitudinal resistivity. Having realized the quantum anomalous Hall effect as the first group in Europe, this breakthrough enabled us to study the electronic and magnetic properties of the samples in close collaborations with other groups. In collaboration with the Physikalisch-Technische Bundesanstalt high-precision measurements were conducted with detailed error analysis yielding a relative de- viation from the von Klitzing constant of (0.17 \(\pm\) 0.25) * 10\(^{−6}\). This is published as the smallest, most precise value at that time, proving the high quality of the provided samples. This result paves the way for the application of magnetic topological insulators as zero-field resistance standards. Non-local magneto-transport measurements were conducted at 15 mK in close collaboration with the transport group in EP3. The results prove that transport happens through chiral edge channels. The detailed analysis of small anomalies in transport measurements reveals instabilities in the magnetic phase even at 15 mK. Their time dependent nature indicates the presence of superparamagnetic contributions in the nominally ferromagnetic phase. Next, the influence of the capping layer and the substrate type on structural properties and the impact on the quantum anomalous Hall effect is investigated. To this end, a layer was grown on a semi-insulating Fe:InP(111)B substrate using the previously optimized growth conditions. The crystalline quality is improved significantly with the mosaicity twist reduced from 5.4\(^{\circ}\) to 1.0\(^{\circ}\). Furthermore, a layer without protective capping layer was grown on Si and studied after providing sufficient time for degradation. The uncapped layer on Si shows perfect quantization, while the layer on InP deviates by about 5%. This may be caused by the higher crystalline quality, but variations in e.g. Sb content cannot be ruled out as the cause. Overall, the quantum anomalous Hall effect seems robust against changes in substrate and capping layer with only little deviations. Furthermore, the dependence of the quantum anomalous Hall effect on the thickness of the layers is investigated. Between 5-8 nm thickness the material typically transitions from a 2D topological insulator with hybridized top and bottom surface states to a 3D topological insulator. A set of samples with 6 nm, 8 nm, and 9 nm thickness exhibits the quantum anomalous Hall effect, while 5 nm and 15 nm thick layers show significant bulk contributions. The analysis of the longitudinal and Hall conductivity during the reversal of magnetization reveals distinct differences between different thicknesses. The 6 nm thick layer shows scaling consistent with the integer quantum Hall effect, while the 9 nm thick layer shows scaling expected for the topological surface states of a 3D topological insulator. The unique scaling of the 9 nm thick layer is of particular interest as it may be a result of axion electrodynamics in a 3D topological insulator. Subsequently, the influence of V doping on the structural and magnetic properties of the host material is studied systematically. Similarly to Bi alloying, increased V doping seems to flatten the layer surface significantly. With increasing V content, Te bonding partners are observed to increase simultaneously in a 2:3 ratio as expected for V incorporation on group-V sites. The linear contraction of the in-plane and out-of-plane lattice constants with increasing V doping is quantitatively consistent with the incorporation of V\(^{3+}\) ions, possibly mixed with V\(^{4+}\) ions, at the group-V sites. This is consistent with SQUID measurements showing a magnetization of 1.3 \(\mu_B\) per V ion. Finally, magnetically doped topological insulator heterostructures are fabricated and studied in magneto-transport. Trilayer heterostructures with a non-magnetic (Bi,Sb)\(_2\)Te\(_3\) layer sandwiched between two magnetically doped layers are predicted to host the axion insulator state if the two magnetic layers are decoupled and in antiparallel configuration. Magneto-transport measurements of such a trilayer heterostructure with 7 nm undoped (Bi,Sb)\(_2\)Te\(_3\) between 2 nm thick layers doped with 1.5 at.% V exhibit a zero Hall plateau representing an insulating state. Similar results in the literature were interpreted as axion insulator state, but in the absence of a measurement showing the antiparallel magnetic orientation other explanations for the insulating state cannot be ruled out. Furthermore, heterostructures including a 2 nm thin, highly V doped layer region show an anomalous Hall effect of opposite sign compared to previous samples. A dependency on the thickness and position of the doped layer region is observed, which indicates that scattering at the interfaces causes contributions to the anomalous Hall effect of opposite sign compared to bulk scattering effects. Many interesting phenomena in quantum anomalous Hall insulators as well as axion insulators are still not unambiguously observed. This includes Majorana bound states in quantum anomalous Hall insulator/superconductor hybrid systems and the topological magneto-electric effect in axion insulators. The limited observation temperature of the quantum anomalous Hall effect of below 1 K could be increased in 3D topological insulator/magnetic insulator heterostructures which utilize the magnetic proximity effect. The main achievement of this thesis is the reproducible growth and characterization of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. The detailed study of the structural requirements of the quantum anomalous Hall effect and the observation of the unique axionic scaling behavior in 3D magnetic topological insulator layers leads to a better understanding of the nature of this new quantum state. The high-precision measurements of the quantum anomalous Hall effect reporting the smallest deviation from the von Klitzing constant are an important step towards the realization of a zero-field quantum resistance standard. N2 - Das Thema dieser Arbeit ist die Herstellung und Charakterisierung von Schichten des magnetischen topologischen Isolators (V,Bi,Sb)\(_2\)Te\(_3\), die den Quanten anomalen Hall-Effekt zeigen. Die Hauptaufgabe war die experimentelle Realisierung des Quanten anomalen Hall-Effekts, welcher nur in Schichten mit bestimmten strukturellen, elektronischen und magnetischen Eigenschaften beobachtet wird. Diese Eigenschaften wurden ermittelt und ihr Einfluss genau analysiert. Als Erstes wurden die optimalen Bedingungen für das Wachstum von reinen Bi\(_2\)Te\(_3\) und Sb\(_2\)Te\(_3\) Kristallschichten und die resultierende strukturelle Qualität untersucht. Die kristalline Qualität von Bi\(_2\)Te\(_3\) verbessert sich signifikant bei hohen Wachstumstemperaturen, welche die Neigung der Domänen verringern und Zwillingsdefekte reduzieren. Als optimale Wachstumstemperatur wurde 260\(^{\circ}\)C ermittelt, ausreichend niedrig um Desorption zu vermeiden während eine hohe Kristallqualität erhalten bleibt. Die Wachstumstemperatur von Sb\(_2\)Te\(_3\) hat einen geringeren Einfluss auf die Kristallqualität. Temperaturen unter 230\(^{\circ}\)C sind allerdings nötig um erhebliche Desorption zu vermeiden. Ein geringer Haftkoeffizient wurde besonders bei der Nukleation auf der Si(111)-H Oberfläche beobachtet und verhindert das Zusammenwachsen von Inseln zu einer homogenen Schicht. Der Einfluss des Substrattyps, der Fehlorientierung der Oberfläche und der Ausheizsequenz auf das Wachstum von Bi\(_2\)Te\(_3\) Schichten wurde untersucht. Die Ausrichtung der Schicht ändert sich je nach Winkel der Fehlorientierung und der Ausheilsequenz: Typischerweise orientieren sich die Ebenen der Schicht parallel zu den Si(111) Ebenen, was aufgrund des Transfers der Stapelfolge vom Substrat zur Schicht an den Stufenkanten die Unterdrückung von Zwillingsdefekte verbessert. Andererseits führt diese Orientierung zu Anti-Phasen-Domänen durch die Verschiebung an den Stufenkanten und zu einer gestuften Oberflächenmorphologie. Für bestimmte Substratpräparationen richtet sich die Schicht jedoch parallel zur Oberfläche aus. Diese Orientierung verhindert Verschiebungen an Stufenkanten und damit Anti-Phasen-Domänen. Dies führt aufgrund der langreichweitigen Ordnung zu sehr schmalen Bragg-Reflexen in XRD rocking curve Diffraktogrammen. Weiterhin führen raue Fe:InP(111):B Substrate zu einer starken Unterdrückung von Zwillingsdefekten und aufgrund der besseren Gitteranpassung zu einer deutlich verringerten Verdrehung der Domänen. Als Nächstes wurde das magnetisch dotierte V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) untersucht mit dem Ziel den Quanten anomalen Hall-Effekt zu realisieren. Die Zugabe von V und Bi zu Sb\(_2\)Te\(_3\) führt zu einer effizienten Nukleation auf der Si(111)-H Oberfläche und einer geschlossenen, homogenen Schicht. Magnetotransport Messungen der Schichten ergeben einen messbaren anomalen Hall-Widerstand deutlich unter der von-Klitzing-Konstanten. Die Beobachtung des Quanten anomalen Hall-Effekts setzt eine vollständige Unterdrückung der defekt-induzierten, parasitären Leitfähigkeit im Inneren der Schicht voraus. Dies kann durch die Optimierung der Dicke, Zusammensetzung und Wachstumsbedingungen der Schicht erreicht werden. Beobachtungen zeigen, dass die Wachstumstemperatur die strukturelle Qualität stark beeinflusst. Erhöhte Temperaturen erzielen größere Inseln, eine verbesserte kristalline Orientierung und weniger Zwillingsdefekte. Andererseits wird Desorption von überwiegend Sb beobachtet, was sich auf die Dicke, Zusammensetzung und Reproduzierbarkeit der Schichten auswirkt. Bei 190\(^{\circ}\)C kann Desorption vermieden werden, was eine präzise Kontrolle über Schichtdicke und Zusammensetzung des quaternären Verbunds ermöglicht, während eine hohe strukturelle Qualität erhalten bleibt. Es ist besonders wichtig das Bi/Sb Verhältnis zu optimieren, da durch das Legieren des n-Typ Bi\(_2\)Te\(_3\) mit dem p-Typ Sb\(_2\)Te\(_3\) bei einem bestimmten Verhältnis Ladungsneutralität erzielt wird. Dies ist nötig um die Leitung im Inneren der Schicht vollständig zu unterdrücken und die Fermikante in die magnetische Austauschlücke zu schieben. Der Sb Gehalt x beeinflusst außerdem die Gitterkonstante a in der Ebene deutlich, im Gegensatz zur Gitterkonstante c in Wachstumsrichtung. Mit Hilfe dieses Zusammenhangs kann x selbst in dünnen Schichten unter 10 nm Dicke, wie sie für den Quantum anomalen Hall-Effekt benötigt werden, genau bestimmt werden. Der Sb Gehalt x beeinflusst weiterhin die Oberflächenmorphologie deutlich: mit steigenden x verringert sich die Inselgröße und die RMS Rauigkeit wächst um bis zu einem Faktor 4 zwischen x = 0 und x = 1. Eine Probenserie mit x zwischen 0,56−0,95 wurde hergestellt, wobei darauf geachtet wurde eine konstante Dicke von 9 nm und eine Dotierkonzentration von 2 at.% V beizubehalten. Magnetotransport Messungen bei 4,2K zeigen Ladungsneutra- lität bei x = 0,86. Der maximale anomale Hall-Widerstand von 0,44 h/e\(^2\) wird bei x = 0,77 nahe der Ladungsneutralität beobachtet. Wird die Messtemperatur auf 50 mK reduziert, steigt der anomale Hall-Widerstand signifikant an. Mehrere Proben mit x in einem schmalen Bereich von 0,76−0,79 zeigen den Quanten anomalen Hall-Effekt mit einem Hall-Widerstand, der die von-Klitzing-Konstante erreicht, und verschwindendem longitudinalen Widerstand. Die Realisierung des Quantum anomalen Hall-Effekts als erste Gruppe in Europa ermöglichte es uns die elektrischen und magnetischen Eigenschaften der Proben in Zusammenarbeit mit anderen Gruppen zu untersuchen. In Kollaboration mit der Physikalisch-Technische Bundesanstalt wurden Hochpräzisionsmessungen mit detaillierter Fehleranalyse durchgeführt und eine relative Abweichung von der von-Klitzing-Konstante von (0,17\(\pm\)0,25)*10\(^{−6}\) erzielt. Dieser Wert wurde als kleinster und genauester Wert publiziert, was die hohe Qualität der zur Verfügung gestellten Proben zeigt. Dieses Ergebnis ebnet den Weg für die Anwendung von magnetischen topologischen Isolatoren als Widerstand Standards ohne Magnetfeld. In enger Zusammenarbeit mit der Transport Gruppe in der EP3 wurden nichtlokale Magnetotransport Messungen bei 15mK durchgeführt. Das Ergebnis beweist, dass Transport durch chirale Randkanäle erfolgt. Die detaillierte Analyse kleiner Anomalien in Transport Messungen offenbart Instabilitäten in der magnetischen Phase selbst bei 15 mK. Der zeitabhängige Charakter dieser Anomalien weist auf superparamagnetische Anteile in der nominell ferromagnetischen Phase hin. Als nächstes wurde der Einfluss der Deckschicht und des Substrattyps auf die strukturellen Eigenschaften und die Auswirkungen auf den Quanten anomalen Hall-Effekt untersucht. Dazu wurde eine Schicht auf halbisolierendem Fe:InP(111)B Substrat unter den zuvor optimierten Wachstumsbedingungen gewachsen. Dies führt zu einer deutlich erhöhten kristallinen Qualität mit einem verringerten Verdrehungswinkel von 5,4\(^{\circ}\) auf 1,0\(^{\circ}\). Weiterhin wurde eine Schicht ohne schützende Deckschicht auf Si gewachsen und, nachdem ausreichend Zeit für mögliche Degradation vergangen war, gemessen. Die Schicht auf Si ohne Deckschicht zeigt perfekte Quantisierung, während die Schicht auf InP eine Abweichung von etwa 5% aufweist. Ursache könnte die höhere kristalline Qualität sein, Variationen in z.B. Sb Gehalt könnten jedoch auch eine Rolle spielen. Insgesamt scheint der Quanten anomale Hall-Effekt robust gegenüber Änderungen des Substrats und der Deckschicht zu sein. Des Weiteren wurde die Abhängigkeit des Quanten anomalen Hall-Effekts von der Schichtdicke untersucht. Zwischen 5−8 nm Dicke wechselt das Material typischerweise von einem 2D topologischen Isolator mit hybridisierten oberen und unteren Oberflächenzustand zu einem 3D topologischen Isolator. Eine Probenreihe mit 6 nm, 8 nm und 9 nm Schichtdicke zeigt den Quanten anomalen Hall- Effekt, während 5 nm und 15 nm dicke Schichten deutliche Beiträge aus dem Volumen haben. Die Analyse der longitudinalen- und Hall-Leitfähigkeit während der Umkehrung der Magnetisierung offenbart eindeutige Unterschiede. Die 6 nm dicke Schicht zeigt ein Skalierungsverhalten konsistent mit dem ganzzahligen Quanten- Hall-Effekt, die 9 nm dicke Schicht dagegen zeigt das erwartete Skalierungsverhalten für die topologischen Oberflächenzustände eines 3D topologischen Isolators. Das besondere Skalierungsverhalten der 9 nm dicken Schicht ist von besonderem Interesse, da es der axionischen Elektrodynamik in einem 3D topologischen Isolator entspringen könnte. Anschließend wird der Einfluss von V Dotierung auf die strukturellen und magnetischen Eigenschaften der Schichten systematisch untersucht. Ähnlich wie das Legieren mit Bi, scheint V Dotieren die Oberfläche deutlich zu glätten. Mit steigenden V Gehalt erhöht sich die Zahl der Te Bindungspartner simultan im 2:3 Verhältnis, wie erwartet für den Einbau von V auf Gruppe-V Plätzen. Die lineare Kontraktion der Gitterkonstanten in der Ebene und senkrecht dazu mit steigender V Dotierung ist quantitativ konsistent mit dem Einbau von V\(^{3+}\) Ionen, möglicherweise gemischt mit V\(^{4+}\) Ionen, auf Gruppe-V Plätzen. Dies ist konsistent mit SQUID Messungen die eine Magnetisierung von 1,3 \(\mu_B\) pro V Ion zeigen. Schließlich werden magnetisch dotierte topologische Isolator Heterostrukturen hergestellt und in Magnetotransport Messungen charakterisiert. Der Axion-Isolator Zustand wurde in dreischichtigen Heterostrukturen mit einer nichtmagnetischen (Bi,Sb)\(_2\)Te\(_3\) Lage zwischen zwei magnetischen Schichten vorhergesagt, falls die beiden magnetischen Lagen entkoppelt sind und in antiparalleler Ausrichtung vorliegen. Magnetotransport Messungen solcher dreischichtigen Heterostrukturen mit 7 nm undotiertem (Bi,Sb)\(_2\)Te\(_3\) zwischen jeweils 2 nm dicken dotierten Schichten mit 1,5 at.% V zeigen ein Null Hall-Plateau, das einen isolierenden Zustand repräsentiert. Ähnliche Ergebnisse in der Literatur wurden als Axion-Isolator Zustand interpretiert, jedoch können andere Erklärungen ohne eine direkten Messung der antiparallelen magnetischen Orientierung nicht ausgeschlossen werden. Weiterhin zeigen Heterostrukturen mit einer 2 nm dünnen, hoch V dotierten Schicht einen anomalen Hall-Effekt mit entgegengesetzten Vorzeichen im Vergleich zu vorhergehenden Proben. Die Abhängigkeit von der Dicke und Position dieser Schicht könnte darauf hindeuten, dass Streuprozesse an den Grenzflächen einen Beitrag zum anomalen Hall-Effekt entgegengesetzt zu den Volumenstreuprozessen verursachen. Viele interessante Phänomene in Quanten anomalen Hall Isolatoren sowie Axion- Isolatoren sind noch nicht eindeutig beobachtet worden. Dies schließt gebundene Majorana-Zustände in Quanten anomalen Hall Isolator/Supraleiter Hybridsystemen und den topologischen magneto-elektrischen Effekt in Axion-Isolatoren ein. Die limitierte Beobachtungstemperatur des Quanten anomalen Hall-Effekts von unter 1 K könnte in Heterostrukturen aus 3D topologischen Isolator und magnetischen Isolator Schichten welche den magnetischen Proximity-Effekt nutzen erhöht werden. Das wichtigste Ergebnis dieser Arbeit ist das reproduzierbare Wachstum und die Charakterisierung von (V,Bi,Sb)\(_2\)Te\(_3\) Schichten die den Quanten anomalen Hall-Effekt zeigen. Die detaillierte Untersuchung der strukturellen Voraussetzungen und die Beobachtung des besonderen axionischen Skalierungsverhaltens in 3D magnetischen Isolatorschichten führt zu einem besseren Verständnis dieses neuen Quantenzustands. Die Hochpräzisionsmessungen des Quanten anomalen Hall-Effekts mit der geringsten Abweichung von der von-Klitzing-Konstanten sind ein wichtiger Schritt zur Realisierung eines Widerstand-Standards basierend auf Quantisierung ohne magnetischem Feld. KW - Bismutverbindungen KW - Topologischer Isolator KW - Molekularstrahlepitaxie KW - Quanten anomalen Hall-Effekt KW - Quantum anomalous Hall effect Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211666 ER - TY - THES A1 - Wilhelm, Thomas T1 - Konzeption und Evaluation eines Kinematik/Dynamik-Lehrgangs zur Veränderung von Schülervorstellungen mit Hilfe dynamisch ikonischer Repräsentationen und graphischer Modellbildung T1 - Conception and evaluation of a kinematics/dynamics course to change students' conceptions with the aid of dynamic-iconic representations and graphic modelling N2 - Auch nach dem herkömmlichen Mechanikunterricht in der Oberstufe verfügen viele Schüler nicht über angemessene physikalische Vorstellungen über die verwendeten physikalischen Begriffe und deren Zusammenhänge. Einführend wurden in dieser Arbeit allgemeine Aspekte zu Schülervorstellungen (Kapitel 2.1) sowie konkrete Schülervorstellungen zur Mechanik (Kapitel 2.2) und relevante Lehrervorstellungen (Kapitel 2.3) dargelegt. Ein Ziel dieser Arbeit war, ein Gesamtkonzept für einen veränderten Kinematik- und Dynamikunterricht ein- und zweidimensionaler Bewegungen in der Jahrgangsstufe 11 des Gymnasiums zu entwickeln, das möglichst vielen Schülern hilft, möglichst viele Fehlvorstellungen zur Mechanik aufzuarbeiten. Dazu wurden u.a. computergestützte Experimente und die Visualisierung der physikalischen Größen mit dynamisch ikonischen Repräsentationen (siehe Kapitel 3.2) eingesetzt, was neue Elementarisierungen und neue Unterrichtsstrategien ermöglichte (siehe Kapitel 8.2 oder Kapitel 5). Um gute Chancen zu haben, dass dieses Konzept den Schulalltag erreicht, wurde es lehrplankonform zum bayerischen Lehrplan konzipiert. Eine erste Zielsetzung der summativen Evaluation war festzustellen, inwieweit das gesamte Unterrichtskonzept von verschiedenen Lehrern durchführbar ist und wie diese es einschätzen (siehe Kapitel 8.4 oder Kapitel 6.3). Ein wichtiges Ziel war dann, mit Hilfe von Tests festzustellen, inwieweit es Veränderungen in den Schülervorstellungen gab (Vor-/Nachtest-Design) und diese Veränderungen mit konventionell unterrichteten Klassen zu vergleichen (Trainings-/Kontrollgruppen-Design) (konventionelle Klassen: Kapitel 8.1; Vergleich: Kapitel 8.5; Kapitel 6.4 + 6.5). Dazu wurden hauptsächlich bereits vorliegende paper-pencil-Tests verwendet, da eine Testneuentwicklung im Rahmen der Arbeit nicht möglich gewesen wäre. Da diese Tests verschiedene Schwächen haben, wurden mehrere verschiedene Tests gleichzeitig eingesetzt, die sich gegenseitig ergänzen. Die graphische Modellbildung in Verbindung mit Animationen ist ein fakultativer Teil dieses Unterrichtskonzeptes. Hierzu wurde zusätzlich eine eigene Interventionsstudie durchgeführt (siehe Kapitel 8.3 und Kapitel 4). Ergebnisse: Dynamisch ikonische Repräsentationen können dem Lehrer neue unterrichtliche Möglichkeiten geben und somit dem Schüler helfen, physikalische Konzepte angemessener zu verstehen. Die Einführung kinematischer Größen anhand zweidimensionaler Bewegungen, die nur mit ikonischen Repräsentationen in Form von Vektorpfeilen sinnvoll ist (geeignete Elementarisierung), führt zu einem physikalischeren Verständnis des Beschleunigungsbegriffes und vermeidet Fehlvorstellungen durch eine ungeeignete Reduktion auf den Spezialfall eindimensionaler Bewegungen. Mehr Schüler konzeptualisieren Beschleunigung wie in der Physik als gerichtete Größe anstelle einer Größe, die die Änderung des Geschwindigkeitsbetrages angibt und allenfalls tangentiale Richtung haben kann. Auch in der Dynamik sind dadurch hilfreiche Darstellungen und so sinnvolle Veränderungen des Unterrichts möglich. Um wesentliche Strukturen aufzuzeigen, werden komplexere Versuche mit mehreren Kräften und Reibung eingesetzt, was erst durch eine rechnerunterstützte Aufbereitung mit dynamisch ikonischen Repräsentationen ermöglicht wird. Diese Darstellungen ermöglichen auch eine aktive Auseinandersetzung der Schüler mit den Themen, indem von ihnen häufig Vorhersagen gefordert werden (geeignete Unterrichtsstrategie). Graphische Modellbildung als weiterer Einsatz bildlicher Darstellungen kann ebenso eine weitere Verständnishilfe sein. Schüler, die nach dem vorgelegten Unterrichtskonzept unterrichtet wurden, zeigten mehr Verständnis für den newtonschen Kraftbegriff. Da die entwickelten Ideen tatsächlich im Unterricht ankamen und dort Veränderungen bewirkten, kann von einer effektiven Lehrerfortbildung mit Transferwirkung gesprochen werden. N2 - Even after the traditional mechanics instruction in the senior classes, many students do not have any adequate physical conceptions of the physical terms and definitions used, as well as of their coherencies. This study therefore commences with a presentation of general aspects of students’ conceptions (chapter 2.1) as well as precise students' conceptions on mechanics (chapter 2.2) and relevant teachers’ conceptions (chapter 2.3). An objective of this study was to develop an overall concept for modified kinematics and dynamics instruction of motions in one and two dimensions in grade 11 of grammar school, aiming at helping as many students as possible to clear as many misconceptions on mechanics as possible. In order to achieve this goal, computer-aided experiments and the visualisation of physical quantities with dynamic-iconic representations (see chapter 3.2) were used, among other things, thus enabling new elementarizations as well as new teaching strategies (see chapter 9.2 or chapter 5). In order to have good chances that this concept reaches the school everyday life, it was conceived curriculum-conformal to the Bavarian curriculum. The first goal of the summative evaluation was to determine to what extent the entire teaching concept can be implemented by different teachers, and how they assess said concept (see chapter 9.4 or chapter 6.3). Subsequently, an important objective was to ascertain, by means of tests, to which extent the students’ conceptions had changed (pre-/post-testing design), and to compare these changes with conventionally taught classes (treatment-/control-group design) (conventional classes: chapter 9.1; comparison: chapter 9.5; chapters 6.4 + 6.5). For that purpose, already existing paper-pencil-tests were mainly used, as a new development of tests would not have been possible in the course of the study. These tests have various shortcomings, so several tests were used at the same time, complementing each other. Graphic modelling in combination with animations is part of this teaching concept. Additionally, an own intervention study was carried out in this context (see chapter 9.3 and chapter 4). Results: Dynamic-iconic representations can provide teachers with new teaching possibilities and thus help students to adequately understand physical concepts. An introduction of kinematic quantities with the aid of two-dimensional motions, which makes only sense with iconic representations in the form of vector arrows (suitable elementarization), leads to a more physical understanding of the acceleration concept and avoids misconceptions due to an inept reduction to the special case of motions in one dimension. More students conceptualize acceleration – like in physics – as a directed quantity instead of a quantity indicating the change of the magnitude of velocity and having at best tangential direction. This renders possible helpful representations for and thus reasonable changes of dynamics instruction as well: In order to illustrate essential structures, more complex experiments with several forces and friction are used, which is only feasible because of a computer-aided preparation with dynamic-iconic representations. These representations also allow for the students to actively deal with the subject by often asking them to make predictions (suitable teaching strategy). Graphic modelling as another application of iconic representations can also further understanding. Students who were instructed pursuant to the teaching concept on hand showed a greater understanding of Newton's concept of force. As the developed ideas were in fact well received in class and caused changes there, it can be called an effective further teacher training with a transfer effect. KW - Physikunterricht KW - Modellierung KW - Physikdidaktik KW - Kinematik KW - Dynamik KW - Modellbildung KW - Schülervorstellungen KW - physics education KW - kinematics KW - dynamics KW - modelling KW - students' conceptions Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39554 N1 - Das Buch mit CD-ROM kann unter der ISBN 978-3-8325-1046-6 auch online oder über den Buchhandel beim Logos-Verlag Berlin bestellt werden. Siehe auch http://www.logos-verlag.de/cgi-bin/buch?isbn=1046 ER - TY - THES A1 - Wilfert, Stefan T1 - Rastertunnelmikroskopische und -spektroskopische Untersuchung von Supraleitern und topologischen Supraleitern T1 - Scanning Tunneling Microscopy and Spectroscopy Study of Superconductors and Topological Superconductors N2 - Quantencomputer können manche Probleme deutlich effizienter lösen als klassische Rechner. Bisherige Umsetzungen leiden jedoch an einer zu geringen Dekohärenzzeit, weshalb die Lebenszeit der Quantenzustände einen limitierenden Faktor darstellt. Topologisch geschützte Anregungen, wie Majorana-Fermionen, könnten hingegen dieses Hindernis überwinden. Diese lassen sich beispielsweise in topologischen Supraleitern realisieren. Bis zum jetzigen Zeitpunkt existieren nur wenige Materialien, die dieses Phänomen aufweisen. Daher ist das Verständnis der elektronischen Eigenschaften für solche Verbindungen von großer Bedeutung. In dieser Dissertation wird die Koexistenz von Supraleitung an der Probenoberfläche und topologischem Oberflächenzustand (engl. topological surface state, TSS) auf potentiellen topologischen Supraleitern überprüft. Diese beiden Bedingungen sind essentiell zur Ausbildung von topologischer Supraleitung in zeitumkehrgeschützten Systemen. Hierzu wird mittels Landaulevelspektroskopie und Quasiteilcheninterferenz das Vorhandensein des TSS am Ferminiveau auf Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ verifiziert, die mittels Transportmessungen als supraleitend identifiziert wurden. Anschließend folgen hochaufgelöste Spektroskopien an der Fermienergie, um die supraleitenden Eigenschaften zu analysieren. Zur Interpretation der analysierten Eigenschaften wird zu Beginn der Ni-haltige Schwere-Fermion-Supraleiter TlNi$_{2}$Se$_{2}$ untersucht, der eine vergleichbare Übergangstemperatur besitzt. Anhand diesem werden die gängigen Messmethoden der Rastertunnelmikroskopie und -spektroskopie für supraleitende Proben vorgestellt und die Leistungsfähigkeit der Messapparatur demonstriert. Im Einklang mit der Literatur zeigt sich ein $s$-Wellencharakter des Paarungsmechanismus sowie die Formation eines für Typ~II-Supraleiter typischen Abrikosov-Gitters in schwachen externen Magnetfeldern. Im folgenden Teil werden die potentiellen topologischen Supraleiter Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ begutachtet, für die eindeutig ein TSS bestätigt wird. Allerdings weisen beide Materialien keine Oberflächensupraleitung auf, was vermutlich durch eine Entkopplung der Oberfläche vom Volumen durch Bandverbiegung zu erklären ist. Unbeabsichtigte Kollisionen der Spitze mit der Probe führen jedoch zu supraleitenden Spitzen, die wesentlich erhöhte Werte für die kritische Temperatur und das kritische Feld zeigen. Der letzte Abschnitt widmet sich dem supraleitenden Substrat Nb(110), für den der Reinigungsprozess erläutert wird. Hierbei sind kurze Heizschritte bis nahe des Schmelzpunktes nötig, um die bei Umgebungsbedingungen entstehende Sauerstoffrekonstruktion effektiv zu entfernen. Des Weiteren werden die elektronischen Eigenschaften untersucht, die eine Oberflächenresonanz zum Vorschein bringen. Hochaufgelöste Messungen lassen eine durch die BCS-Theorie gut repräsentierte Struktur der supraleitenden Energielücke erkennen. Magnetfeldabhängige Experimente offenbaren zudem eine mit der Kristallstruktur vereinbare Anisotropie des Paarungspotentials. Mit diesen Erkenntnissen kann Nb(110) zukünftig als Ausgang für das Wachstum von topologischen Supraleitern herangezogen werden. N2 - Quantum computers are able to solve certain problems a lot more efficiently than classical processors. However, current realizations lack of a suitable decoherence \mbox{time} resulting in insufficient lifetimes of quantum states as the major limiting factor. Topological protected excitations such as Majorana fermions living in topological superconductors show great potential to overcome this obstacle. Since there exists only a small amount of materials with these characteristics the understanding of the electronic properties of such compounds is very important. In this thesis, the coexistence of a topological surface state (TSS) and superconductivity at the sample's surface of potential topological superconductors is studied. These two conditions must be fulfilled for the formation of topological superconductivity in time reversal invariant systems. For this purpose, Landau level spectroscopy and quasiparticle interference are carried out on Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ to verify the TSS at the Fermi energy. Transport measurements showed superconductivity in the bulk for both materials. High resolution spectroscopy experiments at the Fermi energy are performed to analyze the superconductivity. For interpretation of these data, we study the Ni-based heavy fermion superconductor TlNi$_{2}$Se$_{2}$ with a comparable transition temperature to the above mentioned compounds. In this context, the common measuring methods of scanning tunneling microscopy and spectroscopy for superconducting samples are presented and the performance capability of our experimental setup is demonstrated. In consistence with the literature, we find an $s$-wave pairing mechanism and the formation of an Abrikosov lattice typical for type~II superconductors in small external fields. The following part of this work is the investigation of the potential topological superconductors Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ that clearly confirm the presence of a TSS on both materials. No surface superconductivity can be discovered on both compounds presumably caused due to band bending thus leading to a decoupling of the surface from the bulk. However, unintentional collisions between tip and sample lead to the formation of superconducting tips with considerably higher values for the critical temperature and field as compared to the bulk results. In the last paragraph, the superconducting substrate Nb(110) is characterized. Firstly, a cleaning procedure including flashing the sample to temperatures close to the melting point is necessary to remove the oxygen reconstruction that has been formed at ambient conditions. A surface resonance is found upon analyzing the electronic properties. High resolution spectroscopy measurements lead to a superconducting gap in good agreement with the BCS theory. Additionally, magnetic field dependent experiments show an anisotropy of the pair potential accordingly to the crystal symmetry. These findings confirm that Nb(110) shows great potential as a superconducting substrate for growing topological superconductors in the future. KW - Supraleitung KW - Topologischer Isolator KW - Rastertunnelmikroskop KW - Supraleiter 2. Art KW - Topologische Supraleitung KW - Rastertunnelspektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180597 ER - TY - THES A1 - Wießner, Michael T1 - Isolierte Moleküle und delokalisierte Zustände: Einblick in die elektronische Struktur organischer Adsorbate mittels winkelaufgelöster Photoemission T1 - Isolated molecules and delocalised states: Insight into the electronic structure of organic adsorbates by angle-resolved photoemission N2 - Die vorliegende Arbeit demonstriert an Hand von verschiedenen Modellsystemen wie detailliert sich die grundlegenden Eigenschaften molekularer Adsorbate mit der winkelaufgelösten Photoemission erkunden lassen. Die von Peter Puschnig et al. vorgestellte Verknüpfung zwischen Photoemissionsintensität und den Molekülorbitalen im Grundzustand mittels einer Fouriertransformation war dabei entscheidend, um die verschiedenen physikalischen Effekte einordnen und verstehen zu können. Während für Coronen oder HBC die Orbitale im Grundzustand sehr gut zum Experiment passen, lassen sich für PTCDA und NTCDA einige Abweichungen von der DFT-Rechnung auf Basis der (semi-)lokalen GGA- oder LDA-Funktionale erkennen, die sich bei Messungen mit s-Polarisation hervorheben lassen. Diese können auf den Einfluss des Endzustandes in der Photoemission zurückgeführt werden. Im Rahmen der Dysonorbitale lassen sich die dafür verantwortlichen Relaxationseffekte zwischen dem N-Elektronensystem des Moleküls im Grundzustand und dem (N-1)-Elektronensystem des zurückbleibenden Kations explizit beschreiben. Die Berechnung des Photoemissionssignals mittels Fouriertransformation des Grundzustandes kann darüber hinaus weitere physikalische Effekte nicht korrekt berücksichtigen. Erste Anzeichen hierfür konnten am PTCDA-HOMO bei einer Photonenenergie von 27 eV und s-Polarisation detektiert werden. Darüber hinaus kann die Näherung des Photoelektronenendzustands als ebene Welle den beobachteten zirkularen Dichroismus am HOMO und LUMO von PTCDA nicht erklären. Erst in der Erweiterung durch eine Partialwellenzerlegung des Photoelektronenendzustands tritt ein dichroisches Signal in der theoretischen Beschreibung auf. Für das delokalisierte pi-Elektronensystem von PTCDA ist aber selbst diese Verfeinerung noch nicht ausreichend, um das Experiment korrekt beschreiben und weitere Eigenschaften vorhersagen zu können. Qualitativ lassen sich die Veränderungen im CDAD bei der Transformation um 90° für HOMO und LUMO mit einem gruppentheoretischen Ansatz verstehen. Damit ist es möglich, den molekularen Zuständen ihre irreduzible Darstellung zuzuweisen, worüber sich für PTCDA die Verteilung der quantenmechanischen Phase rekonstruieren lässt. Dies ist deshalb äußerst bemerkenswert, da üblicherweise in physikalischen Experimenten nur die Intensität und keine Informationen über die Phase messbar sind. Damit können die Photoemissionsmessungen im k||-Raum vollständig in den Realraum transformiert werden, wodurch die laterale Ortsinformation über die höchsten besetzen Molekülorbitale von PTCDA zugänglich wird. Neben der Bestimmung der molekularen Orbitale, deren Struktur von der Anordnung der Atome im Molekül dominiert wird, enthält die winkelaufgelöste Photoemission Informationen über die Adsorbat-Substrat-Wechselwirkung. Für hoch geordnete Monolagen ist es möglich, die verschiedenen Verbreiterungsmechanismen zu trennen und zu analysieren. Bei den untersuchten Systemen sind die Verbreiterungen aufgrund von unterschiedlichen Adsorptionsplätzen oder Probeninhomogenitäten ebenso wie die experimentelle Auflösung der 2D-Analysatoren vernachlässigbar gegenüber Lebensdauereffekten und evtl. Verbreiterung aufgrund von Dispersionseffekten. Bereits bei den äußerst schwach wechselwirkenden Systemen Coronen auf Ag(111) und Au(111) unterscheiden sich die beiden Systeme in ihrer Lorentzverbreiterung beim HOMO. In erster Näherung lässt sich dies auf eine Lebensdauer des entstandenen Photolochs zurückführen, welches je nach Stärke der Substratkopplung unterschiedlich schnell mit Substratelektronen aufgefüllt werden kann. Die Lorentzbreite als Indikator für die Wechselwirkung bzw. Hybridisierungsstärke zeigt für die Systeme mit Ladungstransfer vom Substrat in das Molekül eine sehr viel größere Verbreiterung. Zum Beispiel beträgt die Lorentzbreite des LUMO für NTCDA/Ag(110) FWHM=427 meV, und somit eine mehr als fünfmal so große Verbreiterung als für das HOMO von Coronen/Au(111). Diese starke Verbreiterung geht im Fall von NTCDA/Ag(110) wie auch bei den untersuchten Systemen NTCDA/Cu(100) und PTCDA/Ag(110) einher mit einem Ladungstransfer vom Substrat ins Molekül, sowie mit der Ausbildung eines zusätzlichen charakteristischen Signals in der Winkelverteilung des LUMO, dem Hybridisierungszustand bei kx,y=0Å-1. Die Intensität dieses Zustands korreliert bei den Systemen NTCDA auf Cu(100) bzw. auf Ag(110) jeweils mit der Lorentzbreite des LUMO-Zustands. Die Hybridisierung zwischen Molekül und Substrat hat noch weitere Auswirkungen auf die beobachtbaren physikalischen Eigenschaften. So führt die starke Hybridisierung mit dem Substrat wiederum dazu, dass sich die intermolekulare Dispersion für die Elektronen im LUMO-Zustand deutlich verstärkt. Der direkte Überlapp der Wellenfunktionen ist im System PTCDA/Ag(110) laut DFT-Rechnungen relativ klein und führt lediglich zu einer Bandbreite von 60 meV. Durch die Hybridisierung mit den delokalisierten Substratbändern erhöht sich der Grad der Delokalisierung im LUMO-Zustand, d.h. die Bandbreite steigt auf 230 meV, wie das Experiment bestätigt. Im Gegensatz zu früheren STM/STS-basierten Messungen [Temirov2006] kann mit der Kombination aus DFT-Rechnung und ARPES-Experiment eindeutig nachgewiesen werden, dass das Substrat im Fall von PTCDA/Ag(110) die Bandbreite verstärken kann, sodass sich die effektive Masse der Lochladungsträger von meff=3,9me auf meff=1,1me reduziert. Im Blick auf die eingangs gestellte Frage, ob sich molekulare Adsorbate eher wie isolierte Moleküle oder als periodische Festkörper beschreiben lassen, kommt diese Arbeit auf ein differenziertes Ergebnis. In den Impulsverteilungen, die sich aus der Form der molekularen Wellenfunktionen ableiten lassen, spiegelt sich eindeutig der isolierte molekulare Charakter wieder. Dagegen zeigt sich in der Energiedispersion E(k||) ein delokalisierter, blochartiger Charakter, und es konnte demonstriert werden, dass es zu einem Vermischen von Metall- und Molekülwellenfunktionen kommt. Molekulare Adsorbate sind also beides, isolierte Moleküle und zweidimensionale Kristalle mit delokalisierten Zuständen. N2 - This work demonstrates the versatility of angular resolved photoemission (ARPES) in extracting fundamental properties of molecular condensates. With the technique proposed by Peter Puschnig et al., ARPES intensities of aromatic molecules can be linked to the absolute square of the fourier transformed molecular orbital. This allows experimentally identifying individual orbitals and understanding different physical mechanisms at the interface between an organic layer and a metal. This technique shows a clear agreement between theoretical intensity distributions, as e.g. derived from density functional theory (DFT), and the measurements on systems like coronene and HBC. Opposite to that, deviations occur on PTCDA and NTCDA for both local and semilocal density functionals, is s-polarized light is used. Additional measurements with different polarisation directions show, that relaxation effects in the final state lead to a mixing of the N-particle initial state with the N-1-particle final state. This phenomenon can be described theoretically within the framework of Dyson orbitals, in an approximate way already by introducing self-interaction corrected density functionals. Additional deviations from the simple approximation of the photoelectron by a plane wave can be made visible with circular polarised light. For the PTCDA HOMO and LUMO, circular dichroism appears in the angular distribution of the photoemission intensity, an effect that is by definition not included in the plane wave approximation. A refined approximation given by the partial wave expansion of the final state shows a distinct dichroism of both the HOMO and LUMO. But apparently this approximation is not able to describe the detailed circular dichroism angular distribution. In the future, this might be possible by applying the Independent Atomic Center (IAC) approximation including multiple intramolecular scattering. The origin of the dichroic signal can be elucidated by measurements with different incidence directions and applying group theory. The changes in the dichroism signal of the HOMO and LUMO upon rotation by 90° is different indicating on different irreducible representations for both states. This paves the way to reconstruct the intramolecular phase distribution for the rather simple PTCDA HOMO and LUMO. Access to this distribution is usually hindered by the measurement process itself due to the absolute square in the evaluation of the photoemission matrix elements. And finally with the knowledge of the intensity and the phase a transformation of the HOMO and LUMO to real space is possible. Next to the measurement of individual molecular orbitals, ARPES contains signatures from the molecule substrate interaction. For a unique identification of the several interaction mechanisms a commensurate lattice of molecules is indispensable. Otherwise different adsorption sites would sum up to a broad photoemission signal, both in energy and momentum direction. For the commensurate systems of coronene or HBC on the Ag(111) and Au(111) surfaces, this prerequisite is fulfilled. The analysis of the peak shape shows different Lorentzian broadenings of the adiabatic vibronic transition of the HOMO. This width can be approximately correlated to the lifetime of the photo hole. Therefor a stronger molecule metal interaction leads to a faster decay of the photo hole on the molecule and consequently to broader lorentzian line width. For example the lorentzian width of the hybridized NTCDA on Ag(110) is of FWHM=427 meV and therewith five times larger than the rather weakly interacting coronene on Au(111). The strong interaction for NTCDA on Ag(110) but also for the investigated systems NTCDA on Cu(100) and PTCDA on Ag(110) goes along with charge transfer from the substrate to the molecule, i.e. the LUMO gets filled for the molecules in the first layer. Moreover a hybridization occurs between the metal and the molecule resulting in an additional contribution to the LUMO in the momentum distribution at kx,y=0Å-1. In the direct comparison of the NTCDA/Ag(110) and NTCDA/Cu(100) adsorption systems, this intensity of this contribution can be linked to the interaction strength deduced from the lorentzian width of the respective LUMO. The hybridization has even more consequences on this interface system. The observable intermolecular band dispersion gets drastically enhanced due to the increased interaction strength mediated by the molecule substrate hybridization. The direct overlap of the PTCDA LUMO wave function is according to the DFT calculation rather small leading to a band width of only 60 meV. Opposite to that, the experiment as well as the calculation for a PTCDA layer adsorbed on a silver slab show a band width of 230 meV, which can only be explained by the additional adsorbate. And opposite to previous STM/STS measurements [Temirov2006] the observed substrate mediated band width enhancement is clearly observed for a molecular state, whose effective mass is reduced by this mechanism from meff=3,9me to meff=1,1me. In conclusion, this work demonstrates how the properties of electrons in molecules and at interfaces to a metal can be detected and characterised by the photoemission technique. If these systems are rather characterized by localized molecular orbitals than by delocalized bloch waves, depends on the individual properties. On the one hand the momentum dependency of the photoemission intensity of indivdual orbitals match nearly perfect the calculation on isolated molecules. On the other hand, the momentum dependent binding energies E(k||) show a bloch-like character, whose band width is amplified by the substrate interaction. This means, the molecular adsorbate is both, molecules and a 2D-crystal with delocalized states. KW - Organisches Molekül KW - Adsorbat KW - ARPES KW - Organische Moleküle KW - Hochgeordnete Monolagen KW - Molekülphysik KW - Festkörperphysik KW - Perylendianhydrid Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-95265 ER - TY - THES A1 - Wiest, Wolfram T1 - Entwicklung einer Apparatur zur In-situ-Ermüdungsprüfung von Zahnimplantaten mittels Synchrotron Micro-CT T1 - Development of an apparatus for in-situ fatigue testing of dental implants using synchrotron micro-CT N2 - Die vorliegende Arbeit beschäftigt sich mit der volumenbildgebenden Untersuchung von mechanischen Ermüdungsprozessen in Titan-Zahnimplantaten. Im Vordergrund steht die Entwicklung einer neuen Messmethode der In-situ-Mikrotomografie am Synchrotron. Zahnimplantate werden beim Gebrauch mechanisch wiederholt belastet (Wechsellast). Nach vielen zyklischen Belastungen können aufgrund von mikroplastische Verformungen Ermüdungsschäden auftreten. Diese können im Extremfall zum Versagen und Verlust eines Implantats führen. Die Computertomographie ist eine sehr geeignete zerstörungsfrei Prüfmethode, um Zahnimplantate zu untersuchen. Diese Arbeit erweitert die bisherige CT-Methode insofern, dass In-situ-Beobachtungen bei mechanischer Belastung möglich sind. Die in dieser Arbeit untersuchten Zahnimplantate weisen an der Implantat-Abutment-Grenzfläche bei eintretender Ermüdung einen Mikrospalt auf. Dieser wird als Indikator für einsetzende Fatigue- Prozesse benutzt. Der in der Synchrotron CT verfügbare Inlinephasenkontrast ermöglicht eine verbesserte Bestimmung der Mikrospaltgröße. Da die schnellen Bewegungen der Ermüdungsprüfung mittels Standard-CT-Verfahren schwer zu erfassen sind, war die stroboskopische Aufnahmemethode das zielführende Messverfahren, um in-situ-Prüfung zu ermöglichen. Die 4 kommerziellen Zahnimplantattypen werden neben der In-situ-Fatigue Prüfung auch mittels klassischer Ermüdungsprüfung untersucht und mit der Neuen Messmethode verglichen. Die hier entwickelte In-situ-Fatigue-Prüfstation kann Proben bis zu 345 N tomographisch untersuchen. Neben den experimentellen Untersuchungen wird eine statische FEM-Betrachtung durchgeführt und mit experimentellen Messdaten verglichen. Zuletzt wird mit der entwickelten Messtation Knochenrisse in der Implantat Umgebung untersucht. N2 - The present work deals with the volume imaging investigation of mechanical fatigue processes in titanium dental implants. The focus is on the development of a new measurement method of in-situ microtomography at the synchrotron. Dental implants are exposed to repeated mechanical loads. After many cyclic loads, fatigue damage can occur due to microplastic deformation. These can lead to failure and loss of an implant. Computed tomography is a very suitable non-destructive testing method to examine dental implants. This work extended the existing method to the point where in situ CT observations under mechanical loading are achievable. The dental implants investigated in this work exhibit a microgap at the implant-abutment interface when fatigue occurs. This is used as an indicator for the occurrence of fatigue processes. The inline phase contrast available in synchrotron CT can be used to determine the size of the microgap. Since the fast motions of fatigue testing are difficult to capture using standard CT techniques, the stroboscopic imaging method was the used measurement technique, to enable in-situ testing. In addition to in-situ fatigue testing, the 4 commercial dental implant types are also examined and compared with each other by means of classical fatigue testing. The developed in-situ fatigue test station can tomographically investigate specimens up to 345 N. In addition to the experimental investigations, a static FEM analysis is performed and compared with experimental measurement data. Finally, the developed measuring station is used to investigate bone cracks in the implant environment. KW - Mikrocomputertomographie KW - Fatigue KW - In situ KW - Zahnimplantat KW - In situ KW - fatigue KW - microtomography KW - dental implant Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257702 ER -