TY - THES A1 - Albert, Ferdinand T1 - Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung T1 - Vertical and lateral emission properties of semiconductor quantum-dot-microresonators in the regime of weak and strong light matter interaction N2 - Die vorliegende Arbeit beschäftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungsträger unterhalb der de-Broglie-Wellenlänge eingeschränkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als künstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikrosäulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavität, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission über Fabry-Perot Moden, als auch eine laterale Emission über Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungsträgern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt über das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die Dämpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erhöht werden kann. In diesem Regime können Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpströmen realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt. N2 - The present work deals with the light-matter interaction in quantum dot microcavities and their vertical and lateral emission properties. Quantum dots are nanoscopic structures, in which charge carriers are confi� ned in all three dimensions below the de-Broglie wavelength. As a consequence, the density of electronic states becomes singular and quantum dots are therefore referred to as arti� cal atoms. To modify the emission properties of quantum dots, they are introduced in micropillar cavities. These consist of a GaAs � -cavity, which is sandwiched between two Bragg mirrors of alternating layers of GaAs and AlAs. The micropillar resonators provide both a vertical emission via Fabry-P� erot modes, as well as a lateral emission via whispering gallery modes. The light-matter interaction between the microcavity modes and the localized charge carriers, called exzitons, can be devided into two regimes. In the strong coupling regime, the spontaneous emission process becomes reversible and an emitted photon can be reabsorbed by the quantum dot. The theoretical description of the coupling of a two-level emitter with a photonic mode is given by the Jaynes-Cummings model. For multiple two-level emitters, it can be extended to the Tavis-Cummings model. In the weak coupling regime the spontaneous emission rate of a quantum dot can be increased by the Purcell e� ect. Here, microlasers with high spontaneous emission coupling factors and low lasing thresholds can be realized. In order to investigate the samples, especially the methods of microelectroluminescence and photon correlation measurements are applied. KW - Drei-Fünf-Halbleiter KW - Quantenpunkt KW - Halbleiterlaser KW - Quantenoptik KW - Mikrolaser KW - Mikrosäulenresonator KW - Quantenpunkt KW - Flüstergaleriemode KW - Galliumarsenidlaser KW - Optischer Resonator KW - Mikrooptik KW - Mikroresonator Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93016 ER - TY - THES A1 - Al-Baidhani, Mohammed T1 - Spectroscopy as a tool to investigate the high energy optical properties of nanostructured magnetically doped topological insulator T1 - Spektroskopie als Methode zur Untersuchung der optischen Eigenschaften nanostrukturierter, magnetisch dotierter Topologischer Isolatoren bei hohen Energien N2 - In this dissertation the electronic and high-energy optical properties of thin nanoscale films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss spectroscopy (EELS). Magnetic topological insulators are presently of broad interest as the combination of ferromagnetism and spin-orbit coupling in these materials leads to a new topological phase, the quantum anomalous Hall state (QAHS), with dissipation less conduction channels. Determining and controlling the physical properties of these complex materials is therefore desirable for a fundamental understanding of the QAHS and for their possible application in spintronics. EELS can directly probe the electron energy-loss function of a material from which one can obtain the complex dynamic dielectric function by means of the Kramers-Kronig transformation and the Drude-Lindhard model of plasmon oscillations. The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with regards to inelastic background contributions. It is shown that the spectra can be accurately described based on the electron energy-loss function obtained from an independent EELS measurement. This allows for a comprehensive and quantitative analysis of the XPS data, which will facilitate future core-level spectroscopy studies in this class of topological materials. From the EELS data, furthermore, the bulk and surface optical properties were estimated, and compared to ab initio calculations based on density functional theory (DFT) performed in the GW approximation for Sb2Te3. The experimental results show a good agreement with the calculated complex dielectric function and the calculated energy-loss function. The positions of the main plasmon modes reported here are expected to be generally similar in other materials in this class of nanoscale TI films. Hence, the present work introduces EELS as a powerful method to access the high-energy optical properties of TI thin films. Based on the presented results it will be interesting to explore more systematically the effects of stoichiometry, magnetic doping, film thickness and surface morphology on the electron-loss function, potentially leading to a better understanding of the complex interplay of structural, electronic, magnetic and optical properties in MTI nanostructures. N2 - Die vorliegende Dissertation beschäftigt sich mit den elektronischen und hochen- ergetischen optischen Eigenschaften von auf der Nanoskala dünnen Filmen des magnetischen topologischen Isolators (MTI) (V,Cr)y(BixSb1−x)2−yTe3 mithilfe von Röntgenphotoelektronenspektroskopie (engl.: X-ray photoelectron spectroscopy, XPS), sowie Elektronenenergieverlustspektroskopie (engl.: electron energy-loss spectroscopy, EELS). Magnetische topologische Isolatoren sind gegenwärtig von großem Interesse, da die Kombination von Ferromagnetismus und Spin-Bahn- Kopplung in diesen Materialien zu einer neuen topologischen Phase führt, der Quanten-Anomalen-Hall-Phase (engl.: quantum anomalous Hall state, QAHS), die sich durch verlustfreie Leitungskanäle auszeichnet. Bestimmung und Kontrolle der physikalischen Eigenschaften dieser komplexen Materialien ist somit erstrebenswert für ein fundamentales Verständnis des QAHS sowie für Anwendungen in der Spin- tronik. EELS erlaubt die direkte Untersuchung der Elektronenenergieverlustfunk- tion eines Materials, aus der man, mithilfe der Kramers-Kronig-Transformation und des Drude-Lindhard-Modells von Plasmonenoszillationen, die komplexe dynamis- che dielektrische Funktion des Materials erhält. In den XPS-Spektren der Rumpfniveaus in (V,Cr)y(BixSb1−x)2−yTe3 wird detail- liert insbesondere der Beitrag des inelastischen Untergrunds analysiert. Es kann gezeigt werden, dass, basierend auf der in einem unabhängigen EELS-Experiment gewonnenen Elektronenenergieverlustfunktion, die Rumpfniveauspektren präzise beschrieben werden können. Dies erlaubt eine umfangreiche und quantitative Anal- yse der Daten, was zukünftige Rumpfniveaustudien dieser Klasse topologischer Materialien erleichtern wird. Die mit EELS gewonnenen Daten ermöglichen weiter- hin eine Abschätzung der optischen Eigenschaften von Volumen und Oberfläche der Materialien, die in der vorliegenden Arbeit mit ab initio Berechnungen aus der Literatur für Sb2Te3 verglichen werden, welche auf Basis der Dichtefunktionaltheo- rie (DFT) in GW-näherung durchgeführt wurden. Die experimentellen Ergebnisse zeigen gute Übereinstimmungen mit der berechneten komplexen dielektrischen Funktion, sowie mit der Energieverlustfunktion. Es wird erwartet, dass die hier beschriebenen Positionen der Hauptplasmonenmoden im Allgemeinen ähnlich zu denen anderer Materialien dieser Klasse auf der Nanoskala dünner topologischer Isolatoren sind. Somit stellt die vorliegende Arbeit das EELS Experiment als eine mächtige Methode vor, die einen Zugang zu den hochenergetischen optischen Eigen- schaften dünner TIs schafft. Basierend auf den hier vorgestellten Ergebnissen bleibt es interessant sein die Auswirkungen von Stöchiometrie, magnetischer Dotierung, Filmdicke, sowie Oberflächenmorphologie auf die Energieverlustfunktion system- atischer zu untersuchen, um damit ein besseres Verständnis für das komplexe Zusammenspiel aus strukturellen, elektronischen und optischen Eigenschaften in MTI-Nanostrukturen zu erlangen. KW - spectroscopy KW - XPS KW - REELS KW - topological insulator KW - QAHE KW - Topologischer Isolator KW - Optische Eigenschaft KW - Elektronenspektroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157221 ER - TY - THES A1 - Adler, Florian Rudolf T1 - Electronic Correlations in Two-dimensional Triangular Adatom Lattices T1 - Elektronische Korrelationen in zweidimensionalen Adatom-Dreiecksgittern N2 - Two-dimensional triangular lattices of group IV adatoms on semiconductor substrates provide a rich playground for the investigation of Mott-Hubbard physics. The possibility to combine various types of adatoms and substrates makes members of this material class versatile model systems to study the influence of correlation strength, band filling and spin-orbit coupling on the electronic structure - both experimentally and with dedicated many-body calculation techniques. The latter predict exotic ground states such as chiral superconductivity or spin liquid behavior for these frustrated lattices, however, experimental confirmation is still lacking. In this work, three different systems, namely the \(\alpha\)-phases of Sn/SiC(0001), Pb/Si(111), and potassium-doped Sn/Si(111) are investigated with scanning tunneling microscopy and photoemission spectroscopy in this regard. The results are potentially relevant for spintronic applications or quantum computing. For the novel group IV triangular lattice Sn/SiC(0001), a combined experimental and theoretical study reveals that the system features surprisingly strong electronic correlations because they are boosted by the substrate through its partly ionic character and weak screening capabilities. Interestingly, the spectral function, measured for the first time via angle-resolved photoemission, does not show any additional superstructure beyond the intrinsic \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) reconstruction, thereby raising curiosity regarding the ground-state spin pattern. For Pb/Si(111), preceding studies have noted a phase transition of the surface reconstruction from \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) to \(3 \times 3\) at 86 K. In this thesis, investigations of the low-temperature phase with high-resolution scanning tunneling microscopy and spectroscopy unveil the formation of a charge-ordered ground state. It is disentangled from a concomitant structural rearrangement which is found to be 2-up/1-down, in contrast to previous predictions. Applying an extended variational cluster approach, a phase diagram of local and nonlocal Coulomb interactions is mapped out. Based on a comparison of theoretical spectral functions with scattering vectors found via quasiparticle interference, Pb/Si(111) is placed in said phase diagram and electronic correlations are found to be the driving force of the charge-ordered state. In order to realize a doped Mott insulator in a frustrated geometry, potassium was evaporated onto the well-known correlated Sn/Si(111) system. Instead of the expected insulator-to-metal transition, scanning tunneling spectroscopy data indicates that the electronic structure of Sn/Si(111) is only affected locally around potassium atoms while a metallization is suppressed. The potassium atoms were found to be adsorbed on empty \(T_4\) sites of the substrate which eventually leads to the formation of two types of K-Sn alloys with a relative potassium content of 1/3 and 1/2, respectively. Complementary measurements of the spectral function via angle-resolved photoemission reveal that the lower Hubbard band of Sn/Si(111) gradually changes its shape upon potassium deposition. Once the tin and potassium portion on the surface are equal, this evolution is complete and the system can be described as a band insulator without the need to include Coulomb interactions. N2 - Zweidimensionale Dreiecksgitter aus Adatomen der vierten Hauptgruppe auf Halbleitersubstraten bieten eine reichhaltige Spielwiese für die Untersuchung von Mott-Hubbard-Physik. Die Möglichkeit, verschiedene Adatomsorten und Substrate zu kombinieren, macht die Mitglieder dieser Materialklasse zu vielseitigen Modellsystemen, um den Einfluss von Korrelationsstärke, Bandfüllung und Spin-Bahn-Kopplung auf die elektronische Struktur zu untersuchen - sowohl im Experiment als auch mit Vielkörper-Rechnungen. Letztere prognostizieren exotische Grundzustände, wie z.B. chirale Supraleitung oder eine Spin-Flüssigkeit, wobei eine experimentelle Bestätigung jeweils noch aussteht. In dieser Dissertation werden drei derartige Systeme, nämlich die \(\alpha\)-Phasen von Sn/SiC(0001), Pb/Si(111) und kaliumdotiertem Sn/Si(111) mittels Rastertunnelmikroskopie und Photoemissionsspektroskopie diesbezüglich untersucht. Die Resultate sind potentiell relevant für Anwendungen im Bereich der Spintronik oder Quantencomputer. Für das erst kürzlich realisierte Gruppe-IV-Dreiecksgitter Sn/SiC(0001) zeigt diese Studie, bei der experimentelle und theoretische Methoden kombiniert werden, dass das System unerwartet starke Korrelationen aufweist, weil sie durch den teilweise ionischen Charakter und das geringe Abschirmungsvermögen des Substrats verstärkt werden. Die Spektralfunktion, die erstmals mit winkelaufgelöster Photoemission gemessen wird, zeigt keine überstruktur außer der intrinsischen \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) Rekonstruktion des Gitters, was die Frage nach der Anordnung der Spins im Grundzustand aufwirft. Bei Pb/Si(111) haben bereits frühere Veröffentlichungen einen Phasenübergang bei der Oberflächenrekonstruktion von \(\sqrt{3}\times\sqrt{3}R30^{\circ}\) auf \(3 \times 3\) bei 86 K festgestellt. In dieser Arbeit zeigen Untersuchungen der Niedrigtemperaturphase mit hochaufgelöster Rastertunnelmikroskopie und -spektroskopie die Entstehung eines ladungsgeordneten Zustands. Dieser wird von der begleitend auftretenden strukturellen Neuordnung getrennt, welche entgegen bisheriger Voraussagen eine 2-hoch/1-tief-Anordnung aufweist. Mit Hilfe einer neu entwickelten Cluster-Rechenmethode wird ein Phasendiagramm erstellt, in dem die lokale und nichtlokale Coulomb-Wechselwirkung gegeneinander aufgetragen sind. Durch einen Vergleich zwischen theoretischen Spektralfunktionen mit Streuvektoren, die mittels Quasiteilchen-Interferenz bestimmt werden, kann Pb/Si(111) in besagtem Phasendiagramm platziert werden. Dadurch stellt sich heraus, dass elektronische Korrelationen die treibende Kraft für den ladungsgeordneten Zustand in Pb/Si(111) sind. Um einen dotierten Mott-Isolator in einem frustrierten System zu verwirklichen, wird Kalium auf das bekannte, korrelierte System Sn/Si(111) aufgebracht. Statt des erwarteten Isolator-Metall übergangs zeigen Messungen mit Rastertunnelspektroskopie, dass die elektronische Struktur von Sn/Si(111) nur lokal in der unmittelbaren Umgebung der Kaliumatome beeinflusst wird, ohne dass das System metallisch wird. Die Kaliumatome werden auf freien \(T_4\)-Plätzen des Substrats adsorbiert, was letztendlich zur Ausbildung von zwei unterschiedlichen Kalium-Zinn-Legierungen mit einem Kaliumanteil von 1/3 bzw. 1/2 führt. Komplementäre Messungen der Spektralfunktion mit winkelaufgelöster Photoemission zeigen, dass das untere Hubbardband von Sn/Si(111) durch die Kalium-Deposition allmählich seine Form verändert. Sobald Zinn und Kalium zu gleichen Teilen auf der Oberfläche vorliegen, ist diese Transformation beendet und das System kann als einfacher Bandisolator ohne die Notwendigkeit, elektronische Korrelationen zu berücksichtigen, beschrieben werden. KW - Rastertunnelmikroskopie KW - ARPES KW - Elektronenkorrelation KW - Oberflächenphysik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241758 ER -