TY - JOUR A1 - Lodha, Manivel A1 - Muchsin, Ihsan A1 - Jürges, Christopher A1 - Juranic Lisnic, Vanda A1 - L’Hernault, Anne A1 - Rutkowski, Andrzej J. A1 - Prusty, Bhupesh K. A1 - Grothey, Arnhild A1 - Milic, Andrea A1 - Hennig, Thomas A1 - Jonjic, Stipan A1 - Friedel, Caroline C. A1 - Erhard, Florian A1 - Dölken, Lars T1 - Decoding murine cytomegalovirus JF - PLOS Pathogens N2 - The genomes of both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) were first sequenced over 20 years ago. Similar to HCMV, the MCMV genome had initially been proposed to harbor ≈170 open reading frames (ORFs). More recently, omics approaches revealed HCMV gene expression to be substantially more complex comprising several hundred viral ORFs. Here, we provide a state-of-the art reannotation of lytic MCMV gene expression based on integrative analysis of a large set of omics data. Our data reveal 365 viral transcription start sites (TiSS) that give rise to 380 and 454 viral transcripts and ORFs, respectively. The latter include 200 small ORFs, some of which represented the most highly expressed viral gene products. By combining TiSS profiling with metabolic RNA labelling and chemical nucleotide conversion sequencing (dSLAM-seq), we provide a detailed picture of the expression kinetics of viral transcription. This not only resulted in the identification of a novel MCMV immediate early transcript encoding the m166.5 ORF, which we termed ie4, but also revealed a group of well-expressed viral transcripts that are induced later than canonical true late genes and contain an initiator element (Inr) but no TATA- or TATT-box in their core promoters. We show that viral upstream ORFs (uORFs) tune gene expression of longer viral ORFs expressed in cis at translational level. Finally, we identify a truncated isoform of the viral NK-cell immune evasin m145 arising from a viral TiSS downstream of the canonical m145 mRNA. Despite being ≈5-fold more abundantly expressed than the canonical m145 protein it was not required for downregulating the NK cell ligand, MULT-I. In summary, our work will pave the way for future mechanistic studies on previously unknown cytomegalovirus gene products in an important virus animal model. KW - virology KW - genetics KW - molecular biology KW - immunology KW - microbiology KW - parasitology KW - murine cytomegalovirus (MCMV) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350480 SN - 1553-7374 VL - 19 IS - 5 ER - TY - JOUR A1 - Djakovic, Lara A1 - Hennig, Thomas A1 - Reinisch, Katharina A1 - Milić, Andrea A1 - Whisnant, Adam W. A1 - Wolf, Katharina A1 - Weiß, Elena A1 - Haas, Tobias A1 - Grothey, Arnhild A1 - Jürges, Christopher S. A1 - Kluge, Michael A1 - Wolf, Elmar A1 - Erhard, Florian A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection. KW - herpes virus KW - transcription Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358161 VL - 14 ER -