TY - JOUR A1 - Janzen, Dieter A1 - Slavik, Benedikt A1 - Zehe, Markus A1 - Sotriffer, Christoph A1 - Loos, Helene M. A1 - Buettner, Andrea A1 - Villmann, Carmen T1 - Sesquiterpenes and sesquiterpenoids harbor modulatory allosteric potential and affect inhibitory GABA\(_{A}\) receptor function in vitro JF - Journal of Neurochemistry N2 - Naturally occurring compounds such as sesquiterpenes and sesquiterpenoids (SQTs) have been shown to modulate GABA\(_{A}\) receptors (GABA\(_{A}\)Rs). In this study, the modulatory potential of 11 SQTs at GABA\(_{A}\)Rs was analyzed to characterize their potential neurotropic activity. Transfected HEK293 cells and primary hippocampal neurons were functionally investigated using electrophysiological whole-cell recordings. Significantly different effects of β-caryophyllene and α-humulene, as well as their respective derivatives β-caryolanol and humulol, were observed in the HEK293 cell system. In neurons, the concomitant presence of phasic and tonic GABA\(_{A}\)R configurations accounts for differences in receptor modulation by SQTs. The in vivo presence of the γ\(_{2}\) and δ subunits is important for SQT modulation. While phasic GABA\(_{A}\) receptors in hippocampal neurons exhibited significantly altered GABA-evoked current amplitudes in the presence of humulol and guaiol, negative allosteric potential at recombinantly expressed α\(_{1}\)β\(_{2}\)γ\(_{2}\) receptors was only verified for humolol. Modeling and docking studies provided support for the binding of SQTs to the neurosteroid-binding site of the GABA\(_{A}\)R localized between transmembrane segments 1 and 3 at the (\(^{+}\)α)-(\(^{-}\)α) interface. In sum, differences in the modulation of GABA\(_{A}\)R isoforms between SQTs were identified. Another finding is that our results provide an indication that nutritional digestion affects the neurotropic potential of natural compounds. KW - allosteric modulation KW - GABA\(_{A}\) receptor KW - patch clamp recording Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259546 VL - 159 IS - 1 ER - TY - JOUR A1 - Bothe, Sebastian A1 - Hänzelmann, Petra A1 - Böhler, Stephan A1 - Kehrein, Josef A1 - Zehe, Markus A1 - Wiedemann, Christoph A1 - Hellmich, Ute A. A1 - Brenk, Ruth A1 - Schindelin, Hermann A1 - Sotriffer, Christoph T1 - Fragment screening using biolayer interferometry reveals ligands targeting the SHP-motif binding site of the AAA+ ATPase p97 JF - Communications Chemistry N2 - Biosensor techniques have become increasingly important for fragment-based drug discovery during the last years. The AAA+ ATPase p97 is an essential protein with key roles in protein homeostasis and a possible target for cancer chemotherapy. Currently available p97 inhibitors address its ATPase activity and globally impair p97-mediated processes. In contrast, inhibition of cofactor binding to the N-domain by a protein-protein-interaction inhibitor would enable the selective targeting of specific p97 functions. Here, we describe a biolayer interferometry-based fragment screen targeting the N-domain of p97 and demonstrate that a region known as SHP-motif binding site can be targeted with small molecules. Guided by molecular dynamics simulations, the binding sites of selected screening hits were postulated and experimentally validated using protein- and ligand-based NMR techniques, as well as X-ray crystallography, ultimately resulting in the first structure of a small molecule in complex with the N-domain of p97. The identified fragments provide insights into how this region could be targeted and present first chemical starting points for the development of a protein-protein interaction inhibitor preventing the binding of selected cofactors to p97. KW - fragment screening KW - AAA+ ATPase p97 KW - biosensor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300821 VL - 5 IS - 1 ER - TY - JOUR A1 - Schmidt, Sebastian A1 - Zehe, Markus A1 - Holzgrabe, Ulrike T1 - Characterization of binding properties of ephedrine derivatives to human alpha-1-acid glycoprotein JF - European Journal of Pharmaceutical Sciences N2 - Most drugs, especially those with acidic or neutral moieties, are bound to the plasma protein albumin, whereas basic drugs are preferentially bound to human alpha-1-acid glycoprotein (AGP). The protein binding of the long-established drugs ephedrine and pseudoephedrine, which are used in the treatment of hypotension and colds, has so far only been studied with albumin. Since in a previous study a stereoselective binding of ephedrine and pseudoephedrine to serum but not to albumin was observed, the aim of this study was to check whether the enantioselective binding behavior of ephedrine and pseudoephedrine, in addition to the derivatives methylephedrine and norephedrine, is due to AGP and to investigate the influence of their different substituents and steric arrangement. Discontinuous ultrafiltration was used for the determination of protein binding. Characterization of ligand-protein interactions of the drugs was obtained by saturation transfer difference nuclear magnetic resonance spectroscopy. Docking experiments were performed to analyze possible ligand-protein interactions. The more basic the ephedrine derivative is, the higher is the affinity to AGP. There was no significant difference in the binding properties between the individual enantiomers and the diastereomers of ephedrine and pseudoephedrine. KW - protein binding KW - AGP KW - ultrafiltration KW - saturation transfer difference NMR KW - epitope mapping KW - ephedrine Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300848 VL - 181 ER -