TY - JOUR A1 - Naseem, Muhammad A1 - Othman, Eman M. A1 - Fathy, Moustafa A1 - Iqbal, Jibran A1 - Howari, Fares M. A1 - AlRemeithi, Fatima A. A1 - Kodandaraman, Geema A1 - Stopper, Helga A1 - Bencurova, Elena A1 - Vlachakis, Dimitrios A1 - Dandekar, Thomas T1 - Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems JF - Scientific Reports N2 - Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions. KW - cytokinins KW - 6-benzylaminopurine Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231317 VL - 10 ER - TY - THES A1 - Kodandaraman, Geema T1 - Influence of insulin-induced oxidative stress in genotoxicity and disease T1 - Einfluss von insulininduziertem oxidativem Stress auf Genotoxitität und Krankheit N2 - Hormones are essential components in the body and their imbalance leads to pathological consequences. T2DM, insulin resistance and obesity are the most commonly occurring lifestyle diseases in the past decade. Also, an increased cancer incidence has been strongly associated with obese and T2DM patients. Therefore, our aim was to study the influence of high insulin levels in accumulating DNA damage in in vitro models and patients, through the induction of oxidative stress. The primary goal of this study was to analyze the genotoxicity induced by the combined action of two endogenous hormones (insulin and adrenaline) with in vitro models, through the induction of micronuclei and to see if they cause an additive increase in genomic damage. This is important for multifactorial diseases having high levels of more than one hormone, such as metabolic syndrome and conditions with multiple pathologies (e.g., T2DM along with high stress levels). Furthermore, the combination of insulin and the pharmacological inhibition of the tumor suppressor gene: PTEN, was to be tested in in vitro models for their genotoxic effect and oxidative stress inducing potential. As the tumor suppressor gene: PTEN is downregulated in PTEN associated syndromes and when presented along with T2DM and insulin resistance, this may increase the potential to accumulate genomic damage. The consequences of insulin action were to be further elucidated by following GFP-expressing cells in live cell-imaging to observe the ability of insulin, to induce micronuclei and replicative stress. Finally, the detrimental potential of high insulin levels in obese patients with hyperinsulinemia and pre-diabetes was to be studied by analyzing markers of oxidative stress and genomic damage. In summary, the intention of this work was to understand the effects of high insulin levels in in vitro and in patients to understand its relevance for the development of genomic instability and thus an elevated cancer risk. N2 - In-vitro-Genotoxizitätsstudien mit hohen Konzentrationen von Insulin und die Kombination mit Adrenalin zeigten keinen additiven Anstieg der Mikrokernzahl. Der Insulinrezeptor und der AKT-Signalweg waren in den insulinvermittelten Genomschaden involviert. Die endogenen ROS-Quellen, Mitochondrien und NOX, waren an dem insulinvermittelten DNA-Schaden beteiligt. Hohe Konzentrationen von mitochondrialen ROS alleine, verursacht durch einen Komplex III Mitochondrien-Inhibitor, führten zu Zytotoxizität, aber nicht zu einer Zunahme des Genomschadens. Daher ist die durch das NOX-Enzym vermittelte ROS-Produktion wahrscheinlich der gemeinsame Faktor des genotoxischen Signalweges von Insulin und Adrenalin. Die Überstimulation des NOX-Enzyms führte zu einer Sättigung der zellulären biologischen Effekte und fehlender Additivität bei der Induktion von Genomschaden. Dies könnte jedoch unter physiologischen Bedingungen anders sein, da die Hormonspiegel niedriger sind und die ROS-Quellen nicht durch jedes einzelne der Hormone bereits maximal genutzt und daher erschöpft werden. Damit könnte die Möglichkeit eines additiven Genomschadens in vivo bestehen. Die Rolle des AKT-Signalwegs bei der Insulin-vermittelten genomischen Schädigung ist bereits etabliert und hier wurde nun die Funktion des negativen Regulatorproteins PTEN untersucht. Die Ergebnisse zeigten, dass die PTEN Inhibierung nicht nur zu einer erhöhten Genotoxizität durch MN-Induktion führte, sondern auch zur Beeinträchtigung der mitochondrialen Funktion. Obwohl kein Anstieg von ROS nach PTEN-Inhibierung beobachtet wurde, könnte die mitochondriale Dysfunktion zur metabolischen Imbalance sowie zur Zunahme des Genomschadens führen. Dies könnte insbesondere bei Patienten mit bestimmten PTEN-assoziierten Syndromen und Krebserkrankungen, die eine defekte PTEN-vermittelte Tumorsuppressorfunktion, DNA-Reparaturdefekte und kompromittierte antioxidative Abwehrmechanismen aufweisen, eine wichtige Rolle spielen. Wenn diese Patienten zusätzlich von Hyperinsulinämie betroffen sind, könnte eine Akkumulation von Genomschaden erfolgen und das Risiko zur Krebsentstehung wäre erhöht. Der Mechanismus der Genomschadensinduktion durch Insulin wurde bisher mit einer ROS-vermittelten DNA-Oxidation in Verbindung gebracht, aber noch nicht mit der mitogenen Signalgebung. Bei dieser beschleunigte das mitogene Potential des Insulins die Zellteilung und verursachte einen leichten replikativen Stress. Der milde replikative Stress könnte der Kontrolle durch die mitotischen Checkpoint-Proteine entgehen und zu Chromosomen-Fehlverteilungen und Chromosomenbrüchen führen. Dieser Effekt wurde in der Krebszelllinie Hela in Form von multipolaren Spindeln und Mikronuklei beobachtet und es ist nicht klar ob normale Zellen mit effizienterer Kontrolle dies verhindern könnten. Insgesamt könnte ein durch hohe Insulinspiegel vermittelter Schaden im Kontext anderer Komorbiditäten wie etwa PTEN Syndromen, metabolischem Syndrom oder Adipositas zu einer Akkumulation von DNA-Schäden führen. Schließlich zeigte die Analyse von Proben adipöser Patienten eine Zunahme von DNA-Schaden und oxidativem Stress im Vergleich zu den gesunden Kontrollen. Der Anstieg des DNA-Schadens war am höchsten in der Untergruppe der Patienten mit Insulinresistenz. Hoher Insulinspiegel bedeutet somit ein Risiko vom erhöhten oxidativen Stress und Genomschaden, insbesondere in Kombination mit Komorbiditäten. Erschwert wird das Verständnis dieser multifaktoriellen Zusammenhänge durch das komplexe Zusammenspiel von oxidativem Stress und seiner zellulären Regulation in vielen physiologischen sowie pathophysiologischen Prozessen. Daneben ist es eine Herausforderung, Genomschäden bei den geringen Wirkspiegeln hormoneller Effekte zu detektieren. Weitere Untersuchungen der komplexen Insulin-vermittelten Genomschadenswege werden notwendig sein, um mögliche Risiken der Hyperinsulinämie bei Erkrankungen wie Stoffwechselkrankheiten, Diabetes Typ 2 und Adipositas besser zu charakterisieren. KW - Insulin KW - Genotoxicity KW - Micronucleus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242005 ER -