TY - JOUR A1 - Ma, Eric Yue A1 - Calvo, M. Reyes A1 - Wang, Jing A1 - Lian, Biao A1 - Mühlbauer, Mathias A1 - Brüne, Christoph A1 - Cui, Yong-Tao A1 - Lai, Keji A1 - Kundhikanjana, Worasom A1 - Yang, Yongliang A1 - Baenninger, Matthias A1 - König, Markus A1 - Ames, Christopher A1 - Buhmann, Hartmut A1 - Leubner, Philipp A1 - Molenkamp, Laurens W. A1 - Zhang, Shou-Cheng A1 - Goldhaber-Gordon, David A1 - Kelly, Michael A. A1 - Shen, Zhi-Xun T1 - Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry JF - Nature Communications N2 - The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a noninverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects. KW - topological insulators KW - surface states KW - HgTe KW - Hg1-xCdxTe KW - vacancies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143185 VL - 6 IS - 7252 ER - TY - JOUR A1 - König, Markus A1 - Baenninger, Matthias A1 - Garcia, Andrei G. F. A1 - Harjee, Nahid A1 - Pruitt, Beth L. A1 - Ames, C. A1 - Leubner, Philipp A1 - Brüne, Christoph A1 - Buhmann, Hartmut A1 - Molenkamp, Laurens W. A1 - Goldhaber-Gordon, David T1 - Spatially Resolved Study of Backscattering in the Quantum Spin Hall State JF - Physical Review X N2 - The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations. KW - mesoscopics KW - topological insulators KW - transport KW - charge KW - wells KW - branched flow KW - nanostructures Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127225 SN - 2160-3308 VL - 3 IS - 2 ER - TY - JOUR A1 - Sánchez, Rafael A1 - Thierschmann, Holger A1 - Molenkamp, Laurens W. T1 - Single-electron thermal devices coupled to a mesoscopic gate JF - New Journal of Physics N2 - We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron–electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define the operation of the system as a thermal transistor or a thermal diode. In the former case, thermal-induced charge fluctuations in the gate dot modify the thermal currents in the conductor with suppressed heat injection, resulting in huge amplification factors and the possible gating with arbitrarily low energy cost. In the latter case, enhanced correlations of the state-selective tunneling transitions redistribute heat flows giving high rectification coefficients and the unexpected cooling of one conductor terminal by heating the other one. We propose quantum dot arrays as a possible way to achieve the extreme tunneling asymmetries required for the different operations. KW - physics KW - quantum dot KW - heat currents KW - thermal devices KW - single-electron tunneling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172982 VL - 19 ER - TY - JOUR A1 - Peixoto, Thiago R. F. A1 - Bentmann, Hendrik A1 - Rüßmann, Philipp A1 - Tcakaev, Abdul-Vakhab A1 - Winnerlein, Martin A1 - Schreyeck, Steffen A1 - Schatz, Sonja A1 - Vidal, Raphael Crespo A1 - Stier, Fabian A1 - Zabolotnyy, Volodymyr A1 - Green, Robert J. A1 - Min, Chul Hee A1 - Fornari, Celso I. A1 - Maaß, Henriette A1 - Vasili, Hari Babu A1 - Gargiani, Pierluigi A1 - Valvidares, Manuel A1 - Barla, Alessandro A1 - Buck, Jens A1 - Hoesch, Moritz A1 - Diekmann, Florian A1 - Rohlf, Sebastian A1 - Kalläne, Matthias A1 - Rossnagel, Kai A1 - Gould, Charles A1 - Brunner, Karl A1 - Blügel, Stefan A1 - Hinkov, Vladimir A1 - Molenkamp, Laurens W. A1 - Friedrich, Reinert T1 - Non-local effect of impurity states on the exchange coupling mechanism in magnetic topological insulators JF - NPJ Quantum Materials N2 - Since the discovery of the quantum anomalous Hall (QAH) effect in the magnetically doped topological insulators (MTI) Cr:(Bi,Sb)\(_2\)Te\(_3\) and V:(Bi,Sb)\(_2\)Te\(_3\), the search for the magnetic coupling mechanisms underlying the onset of ferromagnetism has been a central issue, and a variety of different scenarios have been put forward. By combining resonant photoemission, X-ray magnetic circular dichroism and density functional theory, we determine the local electronic and magnetic configurations of V and Cr impurities in (Bi,Sb)\(_2\)Te\(_3\). State-of-the-art first-principles calculations find pronounced differences in their 3d densities of states, and show how these impurity states mediate characteristic short-range pd exchange interactions, whose strength sensitively varies with the position of the 3d states relative to the Fermi level. Measurements on films with varying host stoichiometry support this trend. Our results explain, in an unified picture, the origins of the observed magnetic properties, and establish the essential role of impurity-state-mediated exchange interactions in the magnetism of MTI. KW - shape-truncation functions KW - semiconductors Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230686 VL - 5 ER - TY - JOUR A1 - Oostinga, Jeroen B. A1 - Maier, Luis A1 - Schüffelgen, Peter A1 - Knott, Daniel A1 - Ames, Christopher A1 - Brüne, Christoph A1 - Tkachov, Grigory A1 - Buhmann, Hartmut A1 - Molenkamp, Laurens W. T1 - Josephson Supercurrent through the Topological Surface States of Strained Bulk HgTe JF - Physical Review X N2 - Strained bulk HgTe is a three-dimensional topological insulator, whose surface electrons have a high mobility (~ 30 000 cm\(^2\)=Vs), while its bulk is effectively free of mobile charge carriers. These properties enable a study of transport through its unconventional surface states without being hindered by a parallel bulk conductance. Here, we show transport experiments on HgTe-based Josephson junctions to investigate the appearance of the predicted Majorana states at the interface between a topological insulator and a superconductor. Interestingly, we observe a dissipationless supercurrent flow through the topological surface states of HgTe. The current-voltage characteristics are hysteretic at temperatures below 1 K, with critical supercurrents of several microamperes. Moreover, we observe a magnetic-field-induced Fraunhofer pattern of the critical supercurrent, indicating a dominant \(2\pi\)-periodic Josephson effect in the unconventional surface states. Our results show that strained bulk HgTe is a promising material system to get a better understanding of the Josephson effect in topological surface states, and to search for the manifestation of zero-energy Majorana states in transport experiments. KW - topological insulators KW - mesoscopics KW - superconductivity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129834 VL - 3 IS - 021007 ER - TY - JOUR A1 - Brüne, Christoph A1 - Thienel, Cornelius A1 - Stuiber, Michael A1 - Böttcher, Jan A1 - Buhmann, Hartmut A1 - Novik, Elena G. A1 - Liu, Chao-Xing A1 - Hankiewicz, Ewelina M. A1 - Molenkamp, Laurens W. T1 - Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator JF - Physical Review X N2 - We report magnetotransport studies on a gated strained HgTe device. This material is a three-dimensional topological insulator and exclusively shows surface-state transport. Remarkably, the Landau-level dispersion and the accuracy of the Hall quantization remain unchanged over a wide density range (3×1011  cm−2