TY - THES A1 - Gelmedin, Verena Magdalena T1 - Targeting flatworm signaling cascades for the development of novel anthelminthic drugs T1 - Signalkaskaden von Plattwürmern als Angriffspunkte zur Entwicklung neuer Antihelminthika N2 - Echinococcus multilocularis verursacht die Alveoläre Echinokokkose (AE), eine lebendsbedrohliche Krankheit mit limitierten chemotherapeutischen Möglichkeiten. Die jetzige Anti-AE Chemotherapie basiert auf einer einzigen Wirkstoffklasse, den Benzimidazolen. Obwohl Benzimidazole in vitro parasitozid wirken, wirken sie in vivo bei AE-Behandlung lediglich parasitostatisch und rufen schwere Nebenwirkungen hervor. In Fällen operabler Läsionen erfordert die Resektion des Parasitengewebes über einen längeren Zeitraum eine chemotherapeutische Unterstützung. Damit sind die jetzigen Behandlungsmöglichkeiten inadäquat und benötigen Alternativen. In der vorliegenden Arbeit wurden die Signalwege von Plattwürmern analysiert, um potentielle Targets für neue therapeutische Ansätze zu identifizieren. Dabei konzentrierte ich mich unter Anwendung von molekularbiologischer, biochemischer und zellbiologischer Methoden auf Faktoren, die an Entwicklung und Proliferation von E. multilocularis beteiligt sind. Darunter waren die drei MAP kinases des Parasiten EmMPK1, ein Erk1/2-Ortholog, EmMPK2, ein p38-Ortholog und EmMPK3, ein Erk7/8-Ortholog. Des Weiteren identifizierte und charakterisierte ich EmMKK2, ein MEK1/2-Ortholog des Parasiten, welches zusammen mit den bekannten Kinasen EmRaf und EmMPK1 ein Erk1/2-ähnliches MAPK Modul bildet. Ich konnte zudem verschiedene Einflüsse von Wirtswachstumsfaktoren wie EGF (epidermal growth factor) und Insulin auf die Signalmechanismen des Parasiten und das Larvenwachstum zeigen, darunter die Phosphorylierung von Elp, ein Ezrin-Radixin-Moesin ähnliches Protein, die Aktivierung von EmMPK1 und EmMPK3 und eine gesteigerte mitotische Aktivität der Echinokokkenzellen. Zusätzlich wurden verschiedene Substanzen auf ihre letale Wirkung auf den Parasiten untersucht, darunter befanden sich (1.) generelle Inhibitoren von Tyrosinkinasen (PP2, Leflunamid), (2.) gegen die Aktivität von Rezeptor-Tyrosin-Kinasen gerichtete Präparate, (3.) ursprünglich anti-neoplastische Wirkstoffe wie Miltefosin und Perifosin, (4.) Inhibitoren von Serin/ Threonin-Kinasen, die die Erk1/2 MAPK Kaskade blockieren und (5.) Inhibitoren der p38 MAPK. In diesen Untersuchungen hat sich EmMPK2 aus den folgenden Gründen als vielversprechendes Target erwiesen. Aminosäuresequenz-Analysen offenbarten einige Unterschiede zu menschlichen p38 MAP Kinasen, welche sehr wahrscheinlich die beobachtete gesteigerte basale Aktivität des rekombinanten EmMPK2 verursachen, verglichen mit der Aktivität humaner p38 MAPK-α. Zusätzlich suggerieren die prominente Autophosphorylierungsaktivität von rekombinantem EmMPK2 und das Ausbleiben einer Interaktion mit den Echinococcus MKKs einen unterschiedlichen Regulierungsmechanismus im Vergleich zu den humanen Proteinen. Die Aktivität von EmMPK2 konnte sowohl in vitro als auch in kultivierten Metazestodenvesikeln durch die Behandlung mit SB202190 und ML3403, zwei ATP kompetitiven Pyridinylimidazolinhibitoren der p38 MAPK, in Konzentrations-abhängiger Weise inhibiert werden. Zudem verursachten beide Substanzen, insbesondere ML3403 die Inaktivierung von Parasitenvesikeln bei Konzentrationen, die kultivierte Säugerzellen nicht beeinträchtigten. Ebenso verhinderte die Anwesenheit von ML3403 die Generation von neuen Vesikeln während der Kultivierung von Echinococcus Primärzellen. Das Targeting von Mitgliedern des EGF-Signalwegs, insbesondere der Erk1/2-ähnlichen MAPK Kaskade mit Raf- und MEK- Inhibitoren verhinderte die Phosphorylierung von EmMPK1 in in vitro kultivierten Metazestoden. Obwohl das Parasitenwachstum unter diesen Konditionen verhindert wurde, blieb die strukturelle Integrität der Metazestodenvesikeln während der Langzeitkultivierung in Anwesenheit der MAPK Kaskade-Inhibitoren erhalten. Ähnliche Effekte wurden beobachtet nach Behandlung mit den anderen zuvor aufgeführten Inhibitoren. Zusammenfassend lässt sich festhalten, dass verschiedene Targets identifiziert werden konnten, die hoch sensibel auf die Anwesenheit der inhibitorischen Substanzen reagierten, aber nicht zum Absterben des Parasiten führten, mit Ausnahme der Pyridinylimidazolen. Die vorliegenden Daten zeigen, dass EmMPK2 ein Überlebendsignal vermittelnden Faktor darstellt und dessen Inhibierung zur Behandlung der AE benutzt werden könnte. Dabei erwiesen sich p38 MAPK Inhibitoren der Pyridinylimidazolklasse als potentielle neue Substanzklasse gegen Echinokokken. N2 - Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), a life-threatening disease with limited options of chemotherapeutic treatment. Anti-AE chemotherapy is currently based on a single class of drugs, the benzimidazoles. Although acting parasitocidic in vitro, benzimidazoles are merely parasitostatic during in vivo treatment of AE and cause severe site effects. In the case of operable lesions, the resection of parasite tissue needs to be supported by a prolonged chemotherapy. Thus, the current treatment options for AE are inadequate and require alternatives. In the present work, the flatworm signaling pathways were analyzed to establish potential targets for novel therapeutic approaches. I focused on factors that are involved in development and proliferation of E. multilocularis using molecular, biochemical and cell biological methods. Among the analysed factors were three MAP kinases of the parasite, EmMPK1, an Erk-1/2 orthologue, EmMPK2, a p38 orthologue and EmMPK3, an Erk7/8 orthologue. Further, I identified and characterized EmMKK2, a MEK1/2 orthologue of the parasite, which, together with the known kinases EmRaf and EmMPK1, forms an Erk1/2-like MAPK module. Moreover, I was able to demonstrate several influences of host growth factors such as EGF (epidermal growth factor) and insulin on worm signaling mechanisms and larval growth, including the phosphorylation of Elp, an ezrin-radixin-moesin like protein, EmMPK1, EmMPK3 and increased mitotic activity of Echinococcus cells. In addition, several substances were examined for their efficacy against the parasite including (i) general tyrosine kinase inhibitors (PP2, leflunamide), (ii) compounds designed to inhibit the activity of receptor tyrosine kinases, (iii) anti-neoplastic agents (miltefosine, perifosine), (iv) serine/threonine kinase inhibitors that have been designed to block the Erk1/2 MAPK cascade and (v) inhibitors of p38 MAPKs. In these studies, EmMPK2 proved to be a promising drug target for the following reasons. Amino acid sequence analysis disclosed several differences to human p38 MAPKs, which is likely to be the reason for the observed enhanced basal activity of recombinant EmMPK2 towards myelin basic protein in comparison to human recombinant p38 MAPK-α. In addition, the prominent auto-phosphorylation activity of the recombinant EmMPK2 protein together with the absence of an interaction with the Echinococcus MKKs suggest a different mechanism of regulation compared to the human enzyme. EmMPK2 activity could be effectively inhibited in vitro and in cultivated metacestode vesicles by treatment with SB202190 and ML3403, two ATP-competitive pyridinyl imidazole inhibitors of p38 MAPKs, in a concentration-dependent manner. Moreover, both compounds, in particular ML3403, caused parasite vesicle inactivation at concentrations which did not affect cultured mammalian cells. Likewise, during the cultivation of Echinococcus primary cells, the presence of ML3403 prevented the generation of new vesicles. Targeting members of the EGF signaling pathway, particulary of the Erk1/2-like MAPK cascade, with Raf and MEK inhibitors prevented the phosphorylation of EmMPK1 in metacestodes cultivated in vitro. However, although parasite growth was prevented under these conditions, the structural integrity of the metacestode vesicles maintained during long-term cultivation in the presence of the MAPK cascade inhibitors. Similar results were obtained when studying the effects of other drugs mentioned above. Taken together, several targets could be identified that reacted with high sensitivity to the presence of inhibitory substances, but did not cause the parasite’s death with one exception, the pyridinyl imidazoles. Based on the presented data, I suggest pyridinyl imidazoles as a novel class of anti-Echinococcus drugs and imply EmMPK2 as survival signal mediating factor, the inhibition of which could be used for the treatment of AE. KW - Fuchsbandwurm KW - Signaltransduktion KW - MAP-Kinase KW - Eingeweidewürmer KW - Proliferation KW - Zelldifferenzierung KW - Inhibitor KW - Entwicklung KW - Heilmittel KW - Fox tapeworm KW - signaltransduction KW - MAP kinase KW - chemotherapy KW - development Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33334 ER - TY - THES A1 - El-Mesery, Mohamed T1 - Development of CD40-targeted bifunctional scFv-TRAIL fusion proteins that induce TRAILR1- and TRAILR2-specifc cell death and dendritic cells activation T1 - Entwicklung CD40 gerichteter bifunktioneller scFv-TRAIL Fusionsproteine die TRAILR1- und TRAILR2-spezifischen Zelltod und dendritischen Zellaktivierung induzieren N2 - TRAIL is a member of TNF superfamily and mediates apoptosis by binding to two DRs, TRAILR1 and TRAILR2. Despite the fact that there are other TRAILRs, TRAILR1 and TRAILR2 receive the major research interest due to their ability to trigger apoptosis and their possible use as targets in tumor therapy. Due to the potential advantages of TRAILR1- or TRAILR2-specific targeting, we investigated recently published TRAIL DR-specific mutants, one conferring specificity for TRAILR1 (TRAILmutR1) and one for TRAILR2 (TRAILmutR2). It was well proved in this work that TRAILmutR1 shows specific binding to TRAILR1 and no specific binding to TRAILR2. TRAILmutR2 vice versa shows specific binding to TRAILR2 and no significant binding to TRAILR1. Moreover, these mutants were able to induce caspase activation and cell death in a TRAILR1/2-specific manner. Moreover, the enhancement of TRAILR2-induced apoptosis by secondary oligomerization of soluble wild-type TRAIL was confirmed for the TRAILR2-specifc TRAIL mutant and similar findings were made with the TRAILR1-specific TRAIL mutant. The soluble form of TRAIL exhibits weak apoptotic activity as compared to transmembrane TRAIL. Therefore, there is the challenge in clinical research to improve the activity of soluble TRAIL. A second strategy besides the above mentioned oligomerization to improve soluble TRAIL activity is anchoring of the molecule to the cell surface, e.g. through the genetic fusion with a scFv domain recognizing a cell surface antigen. In this work, we generated fusion proteins of TRAIL, TRAILmutR1 and TRAILmutR2 with a scFv recognizing CD40 (scFv:G28). Initially, we analyzed the functionality of both the TRAIL domain and the scFv:G28 domain of the corresponding fusion proteins. TRAIL functionality was well proved through its ability to induce cell death in TRAIL sensitive cells such as Jurkat cells, provided that scFv:G28-TRAIL fusion proteins were oligomerized by anti-Flag mAb M2. Concerning the scFv:G28 domain, the fusion proteins showed enhanced binding affinity to cell lines expressing CD40 as compared to their parental CD40-negative cells. Consistent with previous studies investigating TRAIL fusion proteins with other cell surface antigen-targeting scFvs, the scFv:G28 fusion proteins with TRAIL, TRAILmutR1 and TRAILmutR2 showed enhanced induction of cell death in a CD40-dependent manner. Moreover, our results revealed that these fusion proteins have a significant paracrine apoptotic effect on CD40-negative bystander cells upon anchoring to CD40-positive cells which are TRAIL resistant. Thus, the current work provides for the first time scFv fusion proteins of TRAIL and TRAILR1- and TRAILR2-specific TRAIL mutants with CD40-restricted activity. These fusion proteins provide the advantage of attenuating the off-target effects and the potential side effects of per se highly active TRAIL variants on one hand due to the CD40-binding dependent enhancement of activity and on the other hand due to the differential use of TRAILR1 and TRAILR2. CD40 represents a tumor associated marker which is expressed on many tumor cells but also on immune cells. Therefore, the last part of this work focused on the analysis of the ability of scFv:G28-TRAIL fusion proteins to induce CD40 signaling both in tumor cells and also in immune cells. It turned out that the scFv:G28-TRAIL fusion proteins are able to induce CD40 signaling in CD40-positive tumor cells but especially also in immune cells such as iDCs leading to their maturation and further activation of immune responses. Taken together, this work provides novel bifunctional scFv-TRAIL fusion proteins which combine the induction of apoptosis via TRAIL DR with stimulation of CD40 signaling which possibly enhances antitumor immunity. N2 - TRAIL ist ein Mitglied der TNF-Superfamilie und vermittelt Apoptose durch die Aktivierung der Todesrezeptoren, TRAILR1 und TRAILR2. Obwohl es weitere TRAIL-Rezeptoren gibt, liegt das Hauptaugenmerk auf den beiden Apoptose induzierenden Rezeptoren TRAILR1 und TRAILR2 auf Grund ihrer möglichen Anwendung in der Tumortherapie. Wegen der möglichen Vorteile eines spezifischen TRAILR1- und TRAILR2-Targetings, haben wir kürzlich publizierte TRAIL-Todesrezeptor spezifische TRAIL Mutanten untersucht, von denen eine spezifisch für TRAILR1 (TRAILmutR1) und die andere spezifisch für TRAILR2 (TRAILmutR2) ist. Es konnte in dieser Arbeit sehr gut belegt werden, dass TRAILmutR1 spezifisch an TRAILR1 bindet und keine Bindung an TRAILR2 zeigte. Dem entsprechend zeigte die Variante TRAILmutR2 nur eine spezifische Bindung an TRAILR2 und keine signifikante Bindung an TRAILR1. Des Weiteren waren die Mutanten in der Lage, die Caspase-Aktivierung und den Zelltod TRAILR1/2-abhängig zu induzieren. Außerdem konnte eine Erhöhung der TRAILR2-induzierten Apoptose durch eine sekundäre Oligomerisierung der TRAILR2-spezifische TRAIL-Mutante erzielt werden. Ähnliche Ergebnisse zeigte die TRAILR1-spezifische TRAIL-Mutante. Um die Aktivität des löslichen TRAIL Oligomerisierung unabhängig zu erhöhen, wurden in dieser Arbeit TRAIL-Fusionsproteine mit einem scFv (scFv:G28), der CD40 erkennt generiert. In Übereinstimmung mit früheren Studien, die mit TRAIL-Fusionsproteinen von anderen Zelloberflächenantigen-spezifischen scFvs wurden, zeigten die CD40-spezifischen scFv:G28 Fusionsproteine mit TRAIL, TRAILmutR1 und TRAILmutR2 eine verstärkte CD40-abhängige Induktion des Zelltods. Darüber hinaus zeigten unsere Ergebnisse, dass diese Fusionsproteine nach Bindung an CD40-positive Zellen einen parakrinen apoptotischen Effekt, auf umliegende CD40-negative Zellen haben. Diese Arbeit beschreibt somit zum ersten Mal scFv-TRAIL Fusionsproteine mit einer CD40-abhängigen TRAILR1- und TRAILR2-spezifischen Aktivität. CD40 repräsentiert einen tumorassoziierten Marker, der in vielen Tumorzellen aber auch in Zellen des Immunsystems exprimiert wird. Aus diesem Grund fokussierte sich der zweite Teil dieser Arbeit auf die Analyse der Fähigkeit der scFv:G28-TRAIL Fusionsproteine, CD40-Signaling sowohl in Tumor- als auch in Immunzellen zu stimulieren. Es konnte festgestellt werden, dass die scFv:G28-TRAIL Fusionsproteine in der Lage sind, CD40-Signaling in CD40-positiven Tumorzellen, aber auch in Immunzellen, z.B. in iDCs, in denen die ScFv-TRAIL Fusionsproteine die Reifung und Aktivierung induzieren ohne Zelltod auszulösen. Zusammengefasst beschreibt diese Arbeit neue bifunktionelle scFv-TRAIL Fusionsproteine, die die Induktion der Apoptose via TRAIL-Todesrezeptoren und die Stimulation des kostimulatorischen CD40-Moleküls kombinieren, was zu einer synergistischen dualen Antitumor-Aktivität führen kann. KW - Tumor-Nekrose-Faktor KW - Antigen CD40 KW - CD40-targeted bifunctional scFv-TRAIL fusion proteins KW - development KW - TRAIL mutants KW - CD40 gerichteter bifunktioneller scFv-TRAIL Fusionsproteine KW - Entwicklung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100114 ER -