TY - THES A1 - Abel, Daniel Karl-Joseph T1 - Weiterentwicklung der Bodenhydrologie des regionalen Klimamodells REMO T1 - Further development of the soil hydrology in the regional climate model REMO N2 - Die Bodenfeuchte stellt eine essenzielle Variable für den Energie-, Feuchte- und Stoffaustausch zwischen Landoberfläche und Atmosphäre dar. Ihre Auswirkungen auf Temperatur und Niederschlag sind vielfältig und komplex. Die in Klimamodellen verwendeten Schemata zur Simulation der Bodenfeuchte, auch bodenhydrologische Schemata genannt, sind aufgrund des Ursprungs der Klimamodelle aus Wettermodellen jedoch häufig sehr stark vereinfacht dargestellt. Bei Klimamodellen, die Simulationen mit einer groben Auflösung von mehreren Zehner- oder Hunderterkilometern rechnen, können viele Prozesse vernachlässigt werden. Da die Auflösung der Klimamodelle jedoch stetig steigt und mittlerweile beim koordinierten Projekt regionaler Klimamodelle CORDEX-CORE standardmäßig bei 0.22° Kantenlänge liegt, müssen auch höher aufgelöste Daten und mehr Prozesse simuliert werden. Dies gilt erst recht mit Blick auf konvektionsauflösende Simulationen mit wenigen Kilometern Kantenlänge. Mit steigenden Modellauflösungen steigt zugleich die Komplexität und Differenziertheit der Fragestellungen, die mit Hilfe von Klimamodellen beantwortet werden sollen. An diesem Punkt setzt auch das Projekt BigData@Geo an, in dessen Rahmen die vorliegende Arbeit entstand. Ziel dieses Projektes ist es, hochaufgelöste Klimainformationen für den bayerischen Regierungsbezirk Unterfranken für Akteure aus der Land- und Forstwirtschaft sowie dem Weinbau zur Verfügung zu stellen. Auf diesen angewandten und grundlegenden Anforderungen und Zielsetzungen basierend, bedarf auch das in dieser Arbeit verwendete regionale Klimamodell REMO (Version 2015) der weiteren Entwicklung. So ist das Hauptziel der Arbeit das bestehende einschichtige bodenhydrologische Schema durch ein mehrschichtiges zu ersetzen. Der Vorteil mehrerer simulierter Bodenschichten besteht darin, dass nun die vertikale Bewegung des Wassers in Form von Versickerung und kapillarem Aufstieg simuliert werden kann. Dies geschieht auf der Basis bodenhydrologischer Parameter, deren Wert in Abhängigkeit vom Boden und der Bodenfeuchte über die Wasserrückhaltekurve bestimmt wird. Für diese Kurve existieren verschiedene Parametrisierungen, von denen die Ansätze von Clapp-Hornberger und van Genuchten verwendet wurden. Außerdem kann die Bodenfeuchte nun bis zu einer Tiefe von circa 10 m beziehungsweise der Tiefe des anstehenden Gesteins simuliert werden. Damit besteht im Gegensatz zum vorherigen Schema, dessen Tiefe auf die Wurzeltiefe beschränkt ist, die Möglichkeit, dass Wasser auch unterhalb der Wurzeln zur Verfügung stehen kann und somit die absolute im Boden verfügbare Wassermenge zunimmt. Die Schichtung erlaubt darüber hinaus die Verdunstung aus unbewachsenem Boden lediglich auf Basis des in der obersten Schicht verfügbaren Wassers. Ein weiterer Prozess, der dank der Schichtung und der weiter unten erläuterten Datensätze neu parametrisiert werden kann, ist die Infiltration. Für die Verwendung des Schemas sind Informationen über bodenhydrologische Parameter, die Wurzeltiefe und die Tiefe bis zum anstehenden Gestein erforderlich. Entsprechende Datensätze müssen hierfür aufbereitet und in das Modell eingebaut werden. Bezüglich der Wurzeltiefe wurden drei sich bezüglich der Tiefe, der Definition und der verfügbaren Auflösung stark voneinander unterscheidende Datensätze verglichen. Letztendlich wird die Wurzeltiefe aus dem mit einer anderen REMO-Version gekoppelten Vegetationsmodul iMOVE verwendet, da zukünftig eine Kopplung dieses Moduls mit dem mehrschichtigen Boden geplant ist und die Wurzeltiefen damit konsistent sind. Zudem ist die zugrundeliegende Auflösung der Daten hoch und es werden maximale Wurzeltiefen berücksichtigt, die besonders wichtig für die Simulation von Landoberfläche-Atmosphäre-Interaktionen sind. Diese Vorteile brachten die anderen Datensätze nicht mit. In der finalen Modellversion werden für die Tiefe bis zum anstehenden Gestein und die Korngrößenverteilungen die Daten von SoilGrids verwendet. Ein Vergleich mit anderen Bodendatensätzen fand in einer parallel laufenden Dissertation statt (Ziegler 2022). Bei SoilGrids ist hervorzuheben, dass die Korngrößenverteilungen in einer hohen räumlichen Auflösung (1 km^2 oder höher) und mit mehreren vertikalen Schichten vorliegen. Gegenüber dem ursprünglich in REMO verwendeten Datensatz mit einer Kantenlänge von 0.5° und ohne vertikale Differenzierung ist dies eine starke Verbesserung der Eingangsdaten. Dazu kommt, dass die Korngrößenverteilungen die Verwendung kontinuierlicher Pedotransferfunktionen statt fünf diskreter Texturklassen, denen für die bodenhydrologischen Parameter fixe Tabellenwerte zugewiesen werden, ermöglichen. Dies führt zu einer deutlich besseren Differenzierung des heterogenen Bodens. Im Rahmen der Arbeit wurden insgesamt 19 Simulationen für Europa und ein erweitertes Deutschlandgebiet mit Auflösungen von 0.44° beziehungsweise 0.11° für den Zeitraum 2000 bis 2018 gerechnet. Dabei zeigte sich, dass die Einführung des mehrschichtigen Bodenschemas gegenüber dem einschichtigen Schema zu einer Verringerung der Bodenfeuchte in der Wurzeltiefe führt. Nichtsdestotrotz nimmt die absolute Wassermenge des Bodens durch die Berücksichtigung des Bodens unterhalb der Wurzelzone zu. Bezogen auf die einzelnen Schichten wird die Bodenfeuchte damit zwar unterschätzt, im Laufe der Modellentwicklung kann jedoch eine Verbesserung im Vergleich zu ERA5 erzielt werden. Das neue Schema führt zu einer Verringerung der Evapotranspiration, die über alle Schritte der Modellentwicklung und besonders während der Sommermonate auftritt. Im Vergleich zu Validationsdaten von ERA5 und GLEAM zeigt sich, dass dies eine Verbesserung dieser Größe bedeutet, die sowohl in der Fläche als auch beim Fehler und in der Verteilung auftritt. Gleiches lässt sich für den Oberflächenabfluss sagen. Hierfür implementierte Schemata (Philip, Green-Ampt), die anders als das standardmäßig verwendete Improved-Arno-Schema bodenhydrologische Parameter berücksichtigen, konnten eine weitere Verbesserung im Flachland zeigen. In Gebirgsregionen nahm der Fehler durch die nicht enthaltene Berücksichtigung der Hangneigung jedoch zu, sodass in der finalen Modellversion auf das Improved-Arno-Schema zurückgegriffen wurde. Die Temperatur steigt durch die ursprüngliche Version des mehrschichtigen Schemas zunächst an, was zu einer Über- statt der vorherigen Unterschätzung gegenüber E-OBS führt. Die Modellentwicklung resultiert zwar in einer Reduzierung der Temperatur, jedoch fällt diese zu stark aus, sodass der Temperaturfehler letztendlich größer als in der einschichtigen Modellversion ist. Da die Evapotranspiration jedoch maßgeblich verbessert wurde, kann dieser Fehler eventuell auf ein übermäßiges Tuning der Temperatur zurückgeführt werden. Die Betrachtung von Hitzeereignissen am Beispiel der Sommer 2003 und 2018 hat gezeigt, dass die Modellentwicklung dazu beiträgt, diese Ereignisse besser als das einschichtige Schema zu simulieren. Zwar trifft dies nicht auf das räumliche Verhalten der mittleren Temperatur zu, jedoch auf deren zeitlichen Verlauf. Hinzu kommt die bessere Simulation der täglichen Extrem- und besonders der Minimaltemperatur, was zu einer Erhöhung der täglichen Temperaturspanne führt. Diese wird von Klimamodellen in der Regel zu stark unterschätzt. Durch die Berücksichtigung der vertikalen Wasserflüsse hat sich jedoch auch gezeigt, dass noch enormes Entwicklungspotenzial mit Blick auf (boden)hydrologische Prozesse besteht. Dies gilt in besonderem Maße für zukünftige Simulationen mit konvektionserlaubender Auflösung. So sollten subskalige Informationen des Bodens und der Orographie berücksichtigt werden. Dies dient einerseits der Repräsentation vorliegender Heterogenitäten und kann andererseits, wie am Beispiel der Infiltrationsschemata dargelegt, zur Verbesserung bestehender Prozesse beitragen. Da die simulierte Drainage durch das mehrschichtige Bodenschema im gleichen Maße zu- wie der Oberflächenabfluss abnimmt und das Wasser dem Modell in der Folge nicht weiter zur Verfügung steht, sollte zukünftig auch Grundwasser im Modell berücksichtigt werden. Eine Vielzahl von Studien konnte einen Mehrwert durch die Implementierung dieser Variable und damit verbundener Prozesse feststellen. Mittelfristig ist jedoch insgesamt die Kopplung an ein hydrologisches Modell zu empfehlen, um die bei hochauflösenden Simulationen relevanten Prozesse angemessen repräsentieren zu können. Hierfür bieten sich beispielsweise ParFlow oder mHM an. Insgesamt ist festzuhalten, dass das mehrschichtige Bodenschema einen Mehrwert liefert, da schwer zu simulierende und in der Postprozessierung zu korrigierende Variablen wie die Evapotranspiration und der Oberflächenabfluss deutlich besser modelliert werden können als mit dem einschichtigen Schema. Dies gilt auch für die Extremtemperaturen. Beides ist klar auf die Schichtung des Bodens und damit einhergehender Prozesse zurückzuführen. Bezüglich der Daten zeigt sich, dass die Wurzeltiefe, die Berücksichtigung von SoilGrids und die vertikale Bodeninformation für die weitere Optimierung verantwortlich sind. Darüber hinaus ist der höhere Informationsgehalt, der anhand der geschichteten Bodenfeuchte zur Verfügung steht, ebenfalls als Mehrwert einzustufen. N2 - Soil moisture is an essential variable for the exchange of energy, moisture, and substances between the land surface and the atmosphere. Its effects on temperature and precipitation are diverse and complex. However, the schemes used in climate models to simulate soil moisture, also called soil hydrological schemes, are often very simplified due to the origin of climate models from weather models. In climate models, which compute simulations at coarse resolutions of tens or hundreds of kilometers of edge length, many processes can be neglected. However, the resolution of those models is steadily increasing and now generally has 0.22° in the recently published coordinated project of regional climate models called CORDEX-CORE. As a consequence, higher resolved data and more processes have to be simulated. This is even more true with respect to convection-permitting simulations having edge lengths of a few kilometers. With increasing model resolutions, the complexity and differentiation of questions to be answered by the use of climate models increases as well. This is also the case of the BigData@Geo-project, in which framework this thesis was written. The aim of this project is to provide high-resolution climate information for the Bavarian administrative district of Lower Franconia for stakeholders from agriculture, forestry, and viticulture. Due to these applied and basic requirements and objectives, there is also the need of model development for the regional climate model REMO (version 2015) used in this work. Thus, the main goal of this thesis is to replace the existing singlelayer soil hydrological scheme by a multilayer one. The advantage of multiple simulated soil layers is that the vertical movement of water, thus percolation and capillary rise, can now be simulated. This is done on the basis of soil hydrological parameters, those value is determined by the water retention curve as a function of soil texture and soil moisture. Various parameterizations have been developed for this curve, whereas the one of Clapp-Hornberger and van Genuchten were used herein. Additionally, the soil moisture can now be simulated to a depth of approximately 10 m or the bedrock's depth, respectively. Thus, in contrast to the previous scheme, which depth is limited to the rooting depth, there is the possibility that water is also available below the root zone. Hence, the absolute amount of water in the root zone is increased. Furthermore, the layering allows evaporation from bare soil based only on the water available in the uppermost layer. Another process, that can be reparameterized due to the layering and the data sets explained subsequently, is infiltration. To use the new scheme, information on soil hydrological parameters, rooting depth, and the depth to bedrock is required. For this purpose, appropriate data sets have to be prepared and implemented into the model. Regarding the rooting depth, three data sets with different depths, definitions, and resolutions were compared. Finally, the rooting depth from the vegetation module iMOVE, coupled with another REMO version, is used since a coupling between iMOVE and the multilayer soil scheme is planned in the future. With this, the rooting depths are consistent. In addition, the underlying resolution of the data is high and maximum rooting depths are considered, which are particularly important for simulating land surface-atmosphere interactions. These advantages were not provided by the other data sets. In the final model version, SoilGrids data are used for the depth to bedrock and grain size distributions. A comparison with other soil data sets was done in a parallel thesis (Ziegler 2022). For SoilGrids, it should be underlined that the grain size distributions enable the use of continuous pedotransfer functions instead of five discrete texture classes for the soil hydrological parameters. This leads to a much better differentiation of the heterogeneous soil. For this thesis, 19 simulations were calculated for Europe and an extended German region with resolutions of 0.44° and 0.11°, respectively, covering the period of 2000 to 2018. The implementation of the multilayer soil scheme leads to a decrease in root zone soil moisture compared to the singlelayer scheme. Nevertheless, the absolute amount of soil moisture increases by the consideration of soil below the root zone. Related to the individual layers, the soil moisture is thus underestimated, but in the process of model development an improvement can be achieved compared to ERA5. Furthermore, the new scheme results in a reduction of evapotranspiration that occurs across all model development steps and is especially present during summer. When compared to validation data from ERA5 and GLEAM, this is shown to be an improvement that occurs in space as well as bias and distribution. The same was found for surface runoff. Schemes implemented for this purpose (Philip, Geen-Ampt), which differ from the defaultly used Improved-Arno scheme by taking hydrlogical parameters into account, were able to show a further improvement in lowlands. In mountainous regions, however, the bias increased due to the not included consideration of slopes. Consequently, the final model version uses the Improved-Arno scheme. Temperature initially increases through the original version of the multilayer scheme, resulting in an overestimation instead of the previous underestimation by the singlelayer soil relative to E-OBS. Although the model development leads to a reduction in temperature, this reduction turns out to be too large, so that the temperature bias is ultimately higher than in the singlelayer model version. However, since evapotranspiration has been significantly improved, this error can possibly be attributed to a temperature overtuning. The analysis of heat events investigating the summers of 2003 and 2018 has shown that the model development leads to an improved simulation of these events compared to the singlelayer scheme. While this is not true for the spatial behavior of the mean temperature, there is a clear improvement of its temporal one. Additionally, the better simulation of daily extreme temperatures, especially its minimum, leads to an increase of the daily temperature range. This is usually underestimated too much by climate models. The consideration of vertical water fluxes has shown that there is still enormous potential for model development with regard to (soil) hydrological processes. This is especially true for future simulations with convection-permitting resolution. Thus, subgrid information of the soil and the orography should be considered. On the one hand, this serves to represent existing heterogeneities and, on the other hand, can contribute to the improvement of existing processes, as shown by the example of infiltration schemes. Since the simulated drainage increases due to the multilayer soil scheme to the same extent as the surface runoff decreases, the water is subsequently no longer available to the model. Therefore, groundwater should also be considered in the model. A number of studies have found an added value from integrating this variable and related processes. In the medium term, however, coupling to a hydrological model is generally recommended in order to be able to adequately represent the processes relevant in high-resolution simulations. ParFlow or mHM, for example, are suitable for this purpose. Overall, it can be noted that the multilayer soil scheme provides an added value because variables like evapotranspiration and surface runoff, that are difficult to simulate and subsequently to be bias adjusted in postprocessing, are modeled much better than using the singlelayer scheme. This is also true for extreme temperatures. Both improvements are caused by the soil layering and associated processes. Regarding the data, it can be seen that the rooting depth, the consideration of SoilGrids, and the vertical soil information is are responsible for the further optimization. In addition, the higher information content available by representing the layered soil moisture can also be classified as an added value. KW - Klima KW - Modell KW - Klimamodell KW - Modellentwicklung KW - Bodenhydrologie KW - Bodenfeuchte KW - Landoberfläche-Atmosphäre Interaktion KW - climate model KW - model development KW - soil hydrology KW - soil moisture KW - land surface-atmosphere interaction Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311468 ER - TY - THES A1 - Knöfel, Patrick T1 - Energiebilanzmodellierung zur Ableitung der Evapotranspiration – Beispielregion Khorezm T1 - Optimization of energy balance modelling in order to determine evapotranspiration by developing a physical based soil heat flux approach on the example of Khorezm region in Uzbekistan N2 - Zum Verständnis der komplexen Wechselwirkungen innerhalb des Klimasystems der Erde sind Kenntnisse über den hydrologischen Zyklus und den Energiekreislauf essentiell. Eine besondere Rolle obliegt hierbei der Evapotranspiration (ET), da sie eine wesentliche Teilkomponente beider oben erwähnter Kreisläufe ist. Die exakte Quantifizierung der regionalen, tatsächlichen Evapotranspiration innerhalb der Wasser- und Energiekreisläufe der Erdoberfläche auf unterschiedlichen zeitlichen und räumlichen Skalen ist für hydrologische, klimatologische und agronomische Fragestellungen von großer Bedeutung. Dabei ist eine realistische Abschätzung der regionalen tatsächlichen Evapotranspiration die wichtigste Herausforderung der hydrologischen Modellierung. Besonders die unterschiedlichen räumlichen und zeitlichen Auflösungen von Satelliteninformationen machen die Fernerkundung sowohl für globale als auch regionale hydrologischen Fragestellungen interessant. Zusätzlich zur Notwendigkeit des Prozessverständnisses des Wasserkreislaufs auf globaler Ebene kommt dessen regionale Bedeutung für die Landwirtschaft, insbesondere in Bewässerungssystemen arider Regionen. In ariden Klimazonen übersteigt die Menge der Verdunstung oft bei weitem die Niederschlagsmengen. Aufgrund der geringen Niederschlagsmenge muss in ariden agrarischen Regionen das zum Pflanzenwachstum benötigte Wasser mit Hilfe künstlicher Bewässerung aufgebracht werden. Der jeweilige lokale Bewässerungsbedarf hängt von der Feldfrucht und deren Wachstumsphase, den Klimabedingungen, den Bodeneigenschaften und der Ausdehnung der Wurzelzone ab. Die Evapotranspiration ist als Komponente der regionalen Wasserbilanz eine wichtige Steuerungsgröße und Effizienzindikator für das lokale Bewässerungsmanagement. Die Bewässe-rungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkom-men. Dies wird als einer der Hauptgründe für die weltweit steigende Wasserknappheit identifiziert. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den OECD Staaten im Mittel bei etwa 44 %, in den Staaten Mittelasiens bei über 90 %. Bei der Erstellung der vorliegenden Arbeit kam die Methode der residualen Bestimmung der Energiebilanz zum Einsatz. Eines der weltweit am häufigsten eingesetzten und vali-dierten fernerkundlichen Residualmodelle zur ET Ableitung ist das SEBAL-Modell (Surface Energy Balance Algorithm for Land, mit über 40 veröffentlichten Studien. SEBAL eignet sich zur Quantifizierung der Verdunstung großflächiger Gebiete und wurde bisher über-wiegend in der Bewässerungslandwirtschaft eingesetzt. Aus diesen Gründen wurde es für die Bearbeitung der Fragestellungen in dieser Arbeit ausgewählt. SEBAL verwendet physikalische und empirische Beziehungen zur Berechnung der Energiebilanzkomponenten basierend auf Fernerkundungsdaten, bei gleichzeitig minimalem Einsatz bodengestützter Daten. Als Eingangsdaten werden u.a. Informationen über Strahlung, Bodenoberflächentemperatur, NDVI, LAI und Albedo verwendet. Zusätzlich zu SEBAL wurden einige Komponenten der SEBAL Weiterentwicklung METRIC (Mapping Evapotranspiration with Internalized Calibration) verwendet, um die Modellierung der ET vorzunehmen. METRIC überwindet einige Limitierungen des SEBAL Verfahrens und kann beispielsweise auch in stärker reliefierten Regionen angewendet werden. Außerdem ermöglicht die Integration einer gebietsspezifischen Referenz-ET sowie einer Landnutzungsklassifikation eine bessere regionale Anpassung des Residualverfahrens. Unter der Annahme der Bedingungen zum Zeitpunkt der Fernerkundungsaufnahme ergibt sich die Energiebilanz an der Erdoberfläche RN = LvE + H + G. Demnach teilt sich die verfügbare Strahlungsenergie RN in die Komponenten latenter Wärme (LVE), fühlbarer Wärme (H) und Bodenwärme (G) auf. Durch Umstellen der Gleichung kann auf die latente Wärme geschlossen werden. Das wesentliche Ziel der vorliegenden Arbeit ist die Optimierung, Erweiterung und Validierung des ausgewählten SEBAL Verfahrens zur regionalen Modellierung der Energiebilanzkomponenten und der daraus abgeleiteten tatsächlichen Evapotranspiration. Die validierten Modellergebnisse der Gebietsverdunstung der Jahre 2009-2011 sollen anschließend als Grundlage dienen, das Gesamtverständnis der regionalen Prozesse des Wasserkreislaufs zu verbessern. Die Arbeit basiert auf der Datengrundlage von MODIS Daten mit 1 km räumlicher Auflösung. Während die Komponenten verfügbare Strahlungsenergie und fühlbarer Wärmestrom physikalisch basiert ermittelt werden, beruht die Berechnung des Bodenwärmestroms ausschließlich auf empirischen Abschätzungen. Ein großer Nachteil des empirischen Ansatzes ist die Vernachlässigung des zeitlichen Versatzes zwischen Strahlungsbilanz und Bodenwärmestrom in Abhängigkeit der aktuellen Bodenfeuchtesituation. Ein besonderer Schwerpunkt der vorliegenden Arbeit liegt auf der Bewertung und Verbesserung der Modellgüte des Bodenwärmestroms durch Verwendung eines neuen Ansatzes zur Integration von Bodenfeuchteinformationen. Daher wird in der Arbeit ein physikalischer Ansatz entwickelt der auf dem Ansatz der periodischen Temperaturveränderung basiert. Hierbei wurde neben dem ENVISAT ASAR SSM Produkt der TU Wien das operationelle Oberflächenbodenfeuchteprodukt ASCAT SSM als Fernerkundungseingangsdaten ausgewählt. Die mit SEBAL modellierten Energiebilanzkomponenten werden durch eine intensive Validierung mit bodengestützten Messungen bewertet, die Messungen stammen von Bodensensoren und Daten einer Eddy-Kovarianz-Station aus den Jahren 2009 bis 2011. Die Region Khorezm gilt als charakteristisch für die wasserbezogene Problematik der Bewässerungslandwirtschaft Mittelasiens und wurde als Untersuchungsgebiet für diese Arbeit ausgewählt. Die wesentlichen Probleme dieser Region entstehen durch die nach wie vor nicht nachhaltige Land- und Wassernutzung, das marode Bewässerungsnetz mit einer Verlustrate von bis zu 40 % und der Bodenversalzung aufgrund hoher Grundwasserspiegel. Im Untersuchungsgebiet wurden in den Jahren 2010 und 2011 umfangreiche Feldarbeiten zur Erhebung lokaler bodengestützter Informationen durchgeführt. Bei der Evaluierung der modellierten Einzelkomponenten ergab sich für die Strahlungsbi-lanz eine hohe Modellgüte (R² > 0,9; rRMSE < 0,2 und NSE > 0,5). Diese Komponente bildet die Grundlage bei der Bezifferung der für die Prozesse an der Erdoberfläche zur Verfügung stehenden Energie. Für die fühlbaren Wärmeströme wurden ebenfalls gute Ergebnisse erzielt, mit NSE von 0,31 und rRMSE von ca. 0,21. Für die residual bestimmte Größe der latenten Wärmeströmung konnte eine insgesamt gute Modellgüte festgestellt werden (R² > 0,6; rRMSE < 0,2 und NSE > 0,5). Dementsprechend gut wurde die tägliche Evapotranspiration modelliert. Hier ergab sich, nach der Interpolation täglicher Werte, eine insgesamt ausreichend gute Modellgüte (R² > 0,5; rRMSE < 0,2 und NSE > 0,4). Dies bestätigt die Ergebnisse vieler Energiebilanzstudien, die lediglich den für die Ableitung der Evapotranspiration maßgebenden Wärmestrom untersuchten. Die Modellergebnisse für den Bodenwärmestrom konnten durch die Entwicklung und Verwendung des neu entwickelten physikalischen Ansatzes von NSE < 0 und rRMSE von ca. 0,57 auf NSE von 0,19 und rRMSE von 0,35 verbessert werden. Dies führt zu einer insgesamt positiven Einschätzung des Verbesserungspotenzials des neu entwickelten Bodenwärmestromansatzes bei der Berechnung der Energiebilanz mit Hilfe von Fernerkundung. N2 - The understanding of the hydrological and the energy cycles are essential in order to describe the complex interactions within the climate system of the earth. Being recognized as an important component of both, the water and the energy cycle, reliable estimation of actual evapotranspiration and its spatial distribution is one outstanding challenge in this context. Detailed knowledge of land surface fluxes, especially latent and sensible heat components, is important for monitoring the climate and land surface, and for agriculture applications such as irrigation scheduling and water management. The use of remote sensing data to determine actual evapotranspiration (ET) is particularly suitable to provide area based indicators for the evaluation of the efficiency and productivity of irrigation systems as well as sustainability studies. Accurate estimation of evapotranspiration plays an important role in quantification of the water balance at watershed, basin, and regional scale for better planning and managing water resources. For instance, in irrigation systems of arid regions, artificial locations of evapotranspiration have been created. An in-depth process understanding is of paramount importance, as irrigated agriculture consumes about 70 % of the available freshwater resources worldwide, with a significant but unsatisfyingly quantified impact on the water cycle, especially on regional scale. Moreover, an exact quantification of ET inside these artificial ecosystems enables assessments of crop water consumptions and hence about water use efficiency. The withdrawal of water for agricultural use in the countries of Central Asia is more than 90 %. For this thesis the residual methods of energy budget are of interest. One of the most common models dealing with energy budget residual is the Surface Energy Balance Algorithm for Land (SEBAL). SEBAL uses physical and empirical relationships to calculate the energy partitioning with minimum of ground data and atmospheric variables are estimated from remote sensing data. The determination of wet and dry surfaces is necessary to extract threshold values. SEBAL requires remote sensing input data like radiation, surface temperature, NDVI, and albedo. For this thesis an algorithm was developed based on SEBAL, its adaptations METRIC (Mapping Evapotranspiration with Internalized Calibration) and some regional adjustments. METRIC introduces the leaf area index (LAI) and land use classification data to determine the dry and hot surfaces as well as the input of additional meteorological data in order to improve the results of the model. Estimation of latent heat flux (LvE, corresponding to evapotranspiration) with SEBAL is based on assessing the energy balance through several surface properties such as albedo, LAI, NDVI, LST etc. Considering instantaneous condition, the energy balance is written as RN = LvE + H + G. Net radiation energy (RN) is available as the sum of the atmospheric convective fluxes sensible heat flux (H), latent heat flux (LvE) and the soil heat flux (G). The main objective of this thesis is to optimize, improve, and evaluate the existing remote sensing based algorithms for the estimation of actual evapotranspiration. For this purpose the seasonal actual ET was calculated using a partly modified SEBAL. SEBAL was implemented based on MODIS time series to solve the energy balance equation. The applied model has proven practicable for this area and is accepted to fulfil the scientific demands. The SEBAL algorithm is tested and set up for the use of 1km MODIS products. Land surface temperature (LST), emissivity, albedo, Normalized Differenced Vegetation Index (NDVI), and leaf area index (LAI) were combined for modelling the actual ET. Land use classification results were aggregated to 1km MODIS scale. Furthermore, the surface soil moisture products ASCAT SSM and ASAR SSM will be used as input data for the model. In addition to remote sensing data meteorological and ground truth data are used in this study. Meteorological data are wind speed, air temperature, relative humidity, and net radiation. The data is required at time of satellite overpass (about 12 p.m.). RN depends on incoming shortwave radiation, incoming and outgoing longwave radiant fluxes, albedo, emissivity and surface temperature. H is mostly calculated using the aerodynamic resistance between the surface and the reference height in the lower atmosphere (commonly 2 m) above surface. G is usually estimated using an empirical equation. This thesis introduces a modified equation to estimate G using an adjusted form of the thermal conduction equation. This method uses microwave soil moisture products (ASAR-SSM and ASCAT-SSM) as additional input information. The SEBAL modelled energy balance components were intensively validated by field measurements with an eddy covariance system and soil sensors in 2009, 2010, and 2011. The thesis is primarily concerned with the irrigation farming of cotton ecosystems in Central Asia, in particular with the situation within Khorezm Oblast in Uzbekistan. Regional problems of Khorezm are high groundwater levels, soil salinity, and non-sustainable use of land and water. Amongst others, the determination of ground truth data driven by the above mentioned objectives are part of two extensive field campaigns in 2010 and 2011. The validation of the modelled energy balance components leads to a good quality assessment. The model shows very good performance for RN with average model efficiency (NSE) of 0,68 and small relative errors (rRMSE) of about 0,10. For turbulent heat fluxes good results can be achieved with NSE of 0,31 for H and 0,55 for LE, the rRMSE are about 0,21 (H) and 0,18 (LvE). Soil heat flux estimation could be improved using the physically based approach. While the empirical equation leads to negative NSE and rRMSE of about 0,57, the improved approach shows rRMSE of 0,35 and NSE of 0,19. Thus, the improved G estimation can be registered as a valuable contribution for the remote sensing based estimation of energy balance components. N2 - Die Bewässerungslandwirtschaft verbraucht weltweit etwa 70 % der verfügbaren Süßwasservorkommen. Dabei liegt die Wasserentnahme des landwirtschaftlichen Sektors in den Staaten Mittelasiens bei über 90 %. Wichtige Voraussetzungen für die Landwirtschaft sind der Produktionsfaktor Boden und das Klima. Der Wassergehalt und die Temperatur des Bodens bestimmen im Wesentlichen den Anteil der verfügbaren solaren Strahlungsenergie, der in den Boden geleitet wird. Existierende Fernerkundungsansätze verwenden zur Ermittlung des Bodenwärmestroms überwiegend empirische Gleichungen, da zuverlässige flächenhafte Informationen über die Bodenfeuchte bisher aufgrund räumlich unzureichender messtechnischer Bedingungen nicht ermittelt werden können. In der vorliegenden Arbeit wird ein neu entwickelter, physikalisch-basierter Ansatz vorgestellt, der erstmals räumlich hochaufgelöste Bodenfeuchteinformationen aus Radardatensätzen zur Berechnung des Bodenwärmestroms verwendet. Dieser Ansatz wird zur Lösung der Energiebilanz an der Erdoberfläche verwendet, um indirekt auf die tatsächlichen Evapotranspiration zu schließen. Denn eine realistische Quantifizierung der regionalen, tatsächlichen Evapotranspiration als Komponente der regionalen Wasserbilanz ist eine wichtige Steuerungsgröße und ein Effizienzindikator für das lokale Bewässerungsmanagement. T3 - Würzburger Geographische Arbeiten - 120 KW - Evapotranspiration KW - Energiebilanz KW - Mikrometeorologie KW - Bodenfeuchte KW - Fernerkundung KW - Eddy-Kovarianz Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135669 SN - 978-3-95826-042-9 (Print) SN - 978-3-95826-043-6 (Online) SN - 0510-9833 SN - 2194-3656 N1 - Eingereicht mit dem Titel: Optimierung der Energiebilanzmodellierung zur Ableitung der Evapotranspiration durch Entwicklung eines physikalischen Bodenwärmestromansatzes am Beispiel der Region Khorezm (Usbekistan). N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, 978-3-95826-042-9, 34,90 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER -