TY - THES A1 - Hovhanyan, Anna T1 - Functional analyses of Mushroom body miniature (Mbm) in growth and proliferation of neural progenitor cells in the central brain of Drosophila melanogaster T1 - Funktionelle Analyse des Mushroom body minature (Mbm) in das Wachstum und die Proliferation von neuronalen Vorläuferzellen im zentralen Gehirn von Drosophila melanogaster N2 - Zellwachstum und Zellteilung stellen zwei miteinander verknüpfte Prozesse dar, die dennoch grundsätzlich voneinander zu unterscheiden sind. Die Wiederaufnahme der Proliferation von neuralen Vorläuferzellen (Neuroblasten) im Zentralhirn von Drosophila nach der spät-embryonalen Ruhephase erfordert zunächst Zellwachstum. Der Erhalt der regulären Zellgröße ist eine wichtige Voraussetzung für die kontinuierliche Proliferation der Neuroblasten über die gesamte larvale Entwicklungsphase. Neben extrinsischen Ernährungssignalen ist für das Zellwachstum eine kontinuierliche Versorgung mit funktionellen Ribosomen notwendig, damit die Proteinsynthese aufrechterhalten werden kann. Mutationen im mushroom body miniature (mbm) Gen wurden über einen genetischen Screen nach strukturellen Gehirnmutanten identifiziert. Der Schwerpunkt dieser Arbeit lag in der funktionellen Charakterisierung des Mbm Proteins als neues nukleoläres Protein und damit seiner möglichen Beteiligung in der Ribosomenbiogenese. Der Vergleich der relativen Expressionslevel von Mbm und anderen nuklearen Proteinen in verschiedenen Zelltypen zeigte eine verstärkte Expression von Mbm in der fibrillären Komponente des Nukleolus von Neuroblasten. Diese Beobachtung legte die Vermutung nahe, dass in Neuroblasten neben generell benötigten Faktoren der Ribosomenbiogenese auch Zelltyp-spezifische Faktoren existieren. Mutationen in mbm verursachen Proliferationsdefekte von Neuroblasten, wirken sich jedoch nicht auf deren Zellpolarität, die Orientierung der mitotischen Spindel oder die Asymmetrie der Zellteilung aus. Stattdessen wurde eine Reduktion der Zellgröße beobachtet, was im Einklang mit einer Beeinträchtigung der Ribosomenbiogenese steht. Insbesondere führt der Verlust der Mbm Funktion zu einer Retention der kleinen ribosomalen Untereinheit im Nukleolus, was eine verminderte Proteinsynthese zur Folge hat. Interessanterweise wurden Störungen der Ribosomenbiogenese nur in den Neuroblasten beobachtet. Zudem ist Mbm offensichtlich nicht erforderlich, um Wachstum oder die Proliferation von Zellen der Flügelimginalscheibe und S2-Zellen zu steuern, was wiederum dafür spricht, dass Mbm eine Neuroblasten-spezifische Funktion erfüllt. Darüber hinaus wurden die transkriptionelle Regulation des mbm-Gens und die funktionelle Bedeutung von posttranslationalen Modifikationen analysiert. Mbm Transkription wird von dMyc reguliert. Ein gemeinsames Merkmal von dMyc Zielgenen ist das Vorhandensein einer konservierten „E-Box“-Sequenz in deren Promotorregionen. In der Umgebung der mbm-Transkriptionsstartstelle befinden sich zwei „E-Box“-Motive. Mit Hilfe von Genreporteranalysen konnte nachgewiesen werden, dass nur eine von ihnen die dMyc-abhängige Transkription vermittelt. Die dMyc-abhängige Expression von Mbm konnte auch in Neuroblasten verifiziert werden. Auf posttranslationaler Ebene wird Mbm durch die Proteinkinase CK2 phosphoryliert. In der C-terminalen Hälfte des Mbm Proteins wurden in zwei Clustern mit einer Abfolge von sauren Aminosäuren sechs Serin- und Threoninreste als CK2- Phosphorylierungsstellen identifiziert. Eine Mutationsanalyse dieser Stellen bestätigte deren Bedeutung für die Mbm Funktion in vivo. Weiterhin ergaben sich Evidenzen, dass die Mbm-Lokalisierung durch die CK2-vermittelte Phosphorylierung gesteuert wird. Obwohl die genaue molekulare Funktion von Mbm in der Ribosomenbiogenese noch im Unklaren ist, unterstreichen die Ergebnisse dieser Studie die besondere Rolle von Mbm in der Ribosomenbiogenese von Neuroblasten um Zellwachstum und Proliferation zu regulieren. N2 - Cell growth and cell division are two interconnected yet distinct processes. Initiation of proliferation of central brain progenitor cells (neuroblasts) after the late embryonic quiescence stage requires cell growth, and maintenance of proper cell size is an important prerequisite for continuous larval neuroblast proliferation. Beside extrinsic nutrition signals, cell growth requires constant supply with functional ribosomes to maintain protein synthesis. Mutations in the mushroom body miniature (mbm) gene were previously identified in a screen for structural brain mutants. This study focused on the function of the Mbm protein as a new nucleolar protein, which is the site of ribosome biogenesis. The comparison of the relative expression levels of Mbm and other nucleolar proteins in different cell types showed a pronounced expression of Mbm in neuroblasts, particularly in the fibrillar component of the nucleolus, suggesting that in addition to nucleolar components generally required for ribosome biogenesis, more neuroblast specific nucleolar factors exist. Mutations in mbm cause neuroblast proliferation defects but do not interfere with cell polarity, spindle orientation or asymmetry of cell division of neuroblasts. Instead a reduction in cell size was observed, which correlates with an impairment of ribosome biogenesis. In particular, loss of Mbm leads to the retention of the small ribosomal subunit in the nucleolus resulting in decreased protein synthesis. Interestingly, the defect in ribosome biogenesis was only observed in neuroblasts. Moreover, Mbm is apparently not required for cell size and proliferation control in wing imaginal disc and S2 cells supporting the idea of a neuroblast-specific function of Mbm. Furthermore, the transcriptional regulation of the mbm gene and the functional relevance of posttranslational modifications were analyzed. Mbm is a transcriptional target of dMyc. A common feature of dMyc target genes is the presence of a conserved E-box sequence in their promoter regions. Two E-box motifs are found in the vicinity of the transcriptional start site of mbm. Gene reporter assays verified that only one of them mediates dMyc-dependent transcription. Complementary studies in flies showed that removal of dMyc function in neuroblasts resulted in reduced Mbm expression levels. At the posttranslational level, Mbm becomes phosphorylated by protein kinase CK2. Six serine and threonine residues located in two acidic amino acid rich clusters in the C-terminal half of the Mbm protein were identified as CK2 phosphorylation sites. Mutational analysis of these sites verified their importance for Mbm function in vivo and indicated that Mbm localization is controlled by CK2-mediated phosphorylation. Although the molecular function of Mbm in ribosome biogenesis remains to be determined, the results of this study emphasize the specific role of Mbm in neuroblast ribosome biogenesis to control cell growth and proliferation. KW - Taufliege KW - Mbm KW - Neuroblast KW - cell growth KW - proliferation KW - ribosome biogenesis KW - CK2 KW - Myc KW - Vorläuferzellen KW - Drosophila melanogaster Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-91303 ER - TY - THES A1 - Kibler, Eike Mathias U. T1 - Casein-Kinase-2-Beta und neuronale Entwicklungsprozesse T1 - Casein kinase 2ß and neural development - examinations employing the neurogenetic model organism Drosophila melanogaster N2 - Die Pilzkörper von Drosophila melanogaster stellen eine für die Lebensfähigkeit dieses Organismus entbehrliche Gehirnstruktur dar. Die Entwicklungsprozesse, die der Bildung dieser zentralnervösen Struktur zugrunde liegen, sind gut erforscht. Die neuronalen Stammzellen, die für die Bildung dieser Gehirnstruktur verantwortlich sind, sind identifiziert und experimentell gut zugänglich. Daher bietet sich die Drosophila-Pilzkörperentwicklung als neurogenetisches Modellsystem an, grundlegende Mechanismen der Gehirnentwicklung durch die Untersuchung von Pilzkörperstrukturmutanten zu erforschen. In dieser Arbeit wurde mushroom bodies undersized P1 (mbuP1) als eine durch Transposon- Insertion in den Casein-Kinase-2ß-Genlokus verursachte, hypomorphe Mutation identifiziert, die zu einer starken Verringerung der Anzahl der die Pilzkörper bildenden intrinsischen Neurone führt. Eine Reversion des mbuP1-Pilzkörperphänotyps konnte unter anderem durch die Expression von Casein-Kinase-2ß-(CK2ß)-Transgenen im mbuP1-Hintergrund erzielt werden. Durch Rekombination wurde ein fertiler mbuP1-Stamm etabliert, der nun die Untersuchung der zellulären mbuP1-Defekte ermöglicht. Eine partielle, letale Deletion der CK2ß-Transkriptionseinheit wurde erzeugt. Die Letalität dieser Deletion konnte sowohl durch ein genomisches CK2ß-Transgen als auch durch die ubiquitäre Expression einer CK2ß-cDNA gerettet, und hierdurch die essentielle Funktion der CK2ß-Transkriptionseinheit in Drosophila belegt werden. Durch die ubiquitäre Expression von in vitro-mutagenisierten CK2ß-cDNAs im CK2ß-Letalhintergrund wurde gezeigt, daß die Phosphorylierung der regulatorischen CK2ß-Untereinheit durch die katalytisch aktive CK2α-Untereinheit kein lebensnotwendiger Prozess ist. Gleichartige Experimente wurden zur Untersuchung der funktionellen Bedeutung eines CK2ß-Zinkfingermotivs und eines CK2ß-Destruction-Box-Motivs durchgeführt. Diese legen nahe, daß das Zinkfingermotiv im Gegensatz zum Destruction-Box-Motiv für die in vivo-Funktion der CK2ß-Untereinheit essentiell ist. Expression der in vitro-mutagenisierten CK2ß-cDNAs im mbuP1-Hintergrund werden die funktionelle Bedeutung der ausgetauschten Aminosäuren für die Pilzkörperentwicklung zeigen. Eine letale genetische Interaktion von mbuP1 mit einer Mutation des Drosophila-MAP-Kinase-Gens rolled (rlSem) und eine lebensfähige Interaktion von mbuP1 mit einer Mutation des Drosophila-S6-Kinase-p90rsk-Gens ignorant (ignP1), bei der Flügel- und Augenent-wicklungsdefekte zu beobachten sind, wurden gefunden. Es wurde zudem gezeigt, daß rlSem als Suppressor des Pilzkörperphänotyps eines schwächeren mbu-Allels wirkt. Hierdurch konnte eine Beteiligung der Casein-Kinase-2 an MAP-Kinase-Signalübertragungswegen wahrscheinlich gemacht werden. N2 - Mushroom bodies are dispensable for the developing and adult Drosophila fly. The developmental processes underlying mushroom body formation are well studied, the neural stem cells responsable for their development are identified and experimentally well accessable. Therefore Drosophila mushroom body development can be used as a powerful neurogenetic model system to find out about fundamental mechanisms underlying brain development by studying mutant flies showing aberrant mushroom body development. In the course of this work, mushroom bodies undersized P1 (mbuP1) was identified as a hypomorphic casein kinase 2ß-allele (CK2ß) caused by the insertion of transposable elements in the casein kinase 2ß gene locus. The mbuP1-mutation leads to a drastic reduction of the number of intrinsic neurons forming the adult mushroom body. Expression of transgenic CK2ß in a mbuP1-mutant background led to a reversion of the mbuP1-associated mushroom body phenotype. Fertility of mbuP1-flies could be partially restored by recombining the original mbuP1{P3843/2}-chromosome with a w1118-chromosome. This will allow future studies to identify the cellular defects caused by mbuP1. A partial deletion of the CK2ß gene causes lethality which could be rescued by either a genomic CK2ß-transgene or by ubiquitous expression of a CK2ß-cDNA. Therefore, CK2ß has been shown to be an essential gene in Drosophila. By ubiquitous expression of in vitro mutagenized CK2ß-cDNAs in a CK2ß-lethal background, a non-essential role of phosphorylation of the regulatory CK2ß-subunit by the catalytically active CK2α-subunit could be shown. Similar experiments were performed to examine the role of a CK2ß-zincfinger motif and a CK2ß-destruction-box motif. The obtained results suggest a non-essential in vivo function for the destruction-box motif and an essential in vivo function for the zincfinger-motif. Expression of the in vitro mutagenized CK2ß-cDNAs in a mbuP1-background will reveal the functional significance of the substituted amino acids for mushroom body development. Performed genetic interaction studies showed a lethal interaction of mbuP1 with a mutation in the Drosophila-MAP-kinase gene rolled (rlSem) and a viable genetic interaction with a mutation in the Drosophila-S6-kinase-p90rsk gene ignorant (ignP1) which revealed defects in wing formation and eye development. It also could be shown that rlSem acts as a suppressor of the mushroom body phenotype associated with a weaker mbu-allele. These observations point towards a role of casein kinase 2 in MAP-kinase signalling. KW - Taufliege KW - Pilzkörper KW - Ontogenie KW - Embryonalentwicklung KW - Proteinkinase CK2 KW - Drosophila KW - CK2 KW - Pilzkörper KW - CK2ß KW - Entwicklung KW - Drosophila KW - CK2 KW - mushroom body KW - CK2ß KW - development Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4202 ER -