TY - THES A1 - Bregenzer, Jürgen T1 - Effizienter Einsatz von Multicore-Architekturen in der Steuerungstechnik T1 - Efficient Application of Multi-core Architectures in Control Technology N2 - Der Einsatz von Multicore-Prozessoren in der industriellen Steuerungstechnik birgt sowohl Chancen als auch Risiken. Die vorliegende Dissertation entwickelt und bewertet aus diesem Grund generische Strategien zur Nutzung dieser Prozessorarchitektur unter Berücksichtigung der spezifischen Rahmenbedingungen und Anforderungen dieser Domäne. Multicore-Prozessoren bieten die Chance zur Konsolidierung derzeit auf dedizierter Hardware ausgeführter heterogener Steuerungssubsysteme unter einer bisher nicht erreichbaren temporalen Isolation. In diesem Kontext definiert die vorliegende Dissertation die spezifischen Anforderungen, die eine integrierte Ausführung in der Domäne der industriellen Automatisierung erfüllen muss. Eine Vorbedingung für ein derartiges Szenario stellt allerdings der Einsatz einer geeigneten Konsolidierungslösung dar. Mit einem virtualisierten und einem hybriden Konsolidierungsansatz werden deshalb zwei repräsentative Lösungen für die Domäne eingebetteter Systeme vorgestellt, die schließlich hinsichtlich der zuvor definierten Kriterien evaluiert werden. Da die Taktraten von Prozessoren physikalische Grenzen erreicht haben, werden sich in der Steuerungstechnik signifikante Performanzsteigerungen zukünftig nur durch den Einsatz von Multicore-Prozessoren erzielen lassen. Dies hat zur Vorbedingung, dass die Firmware die Parallelität dieser Prozessorarchitektur in geeigneter Weise zu nutzen vermag. Leider entstehen bei der Parallelisierung eines komplexen Systems wie einer Automatisierungs-Firmware im Allgemeinen signifikante Aufwände. Infolgedessen sollten diesbezügliche Entscheidungen nur auf Basis einer objektiven Abwägung potentieller Alternativen getroffen werden. Allerdings macht die Systemkomplexität eine Abschätzung der durch eine spezifische parallele Firmware-Architektur zu erwartenden Performanz zu einer anspruchsvollen Aufgabe. Dies gilt vor allem, da eine Parallelisierung gefordert wird, die für eine Vielzahl von Lastszenarien in Form gesteuerter Maschinen geeignet ist. Aus diesem Grund spezifiziert die vorliegende Dissertation eine anwendungsorientierte Methode zur Unterstützung von Entwurfsentscheidungen, die bei der Migration einer bestehenden Singlecore-Firmware auf eine homogene Multicore-Architektur zu treffen sind. Dies wird erreicht, indem in automatisierter Weise geeignete Firmware-Modelle auf Basis von dynamischem Profiling der Firmware unter mehreren repräsentativen Lastszenarien erstellt werden. Im Anschluss daran werden diese Modelle um das Expertenwissen von Firmware-Entwicklern erweitert, bevor mittels multikriterieller genetischer Algorithmen der Entwurfsraum der Parallelisierungsalternativen exploriert wird. Schließlich kann eine spezifische Lösung der auf diese Weise hergeleiteten Pareto-Front auf Basis ihrer Bewertungsmetriken zur Implementierung durch einen Entwickler ausgewählt werden. Die vorliegende Arbeit schließt mit einer Fallstudie, welche die zuvor beschriebene Methode auf eine numerische Steuerungs-Firmware anwendet und dabei deren Potential für eine umfassende Unterstützung einer Firmware-Parallelisierung aufzeigt. N2 - The application of multi-core CPUs in industrial control technology holds chances as well as risks. Consequently, this thesis develops and evaluates generic strategies for using this processor architecture in due consideration of the specific framework conditions and demands of this domain. Multi-core CPUs offer the chance of consolidating heterogeneous control subsystems currently running on dedicated hardware devices while maintaining a degree of temporal isolation in between them that has been unattainable so far. In this context, this thesis defines the specific demands an integrated execution has to meet in the domain of industrial automation. However, one precondition to this scenario is the use of an appropriate consolidation solution. Thus, two representative solutions for the domain of embedded systems are presented in terms of a virtualized and a hybrid consolidation approach, before being finally evaluated with regard to the previously defined criteria. As CPU clock rates have reached physical boundaries, significant future performance gains in the domain of control technology will only be achieved by the application of multi-core CPUs. As a precondition, the firmware has to exploit the parallelism of this processor architecture in an appropriate manner. Unfortunately, for a sophisticated system like an automation firmware, a parallelization commonly induces significant efforts. Thus, decisions in this regard should only be made on the basis of an objective consideration of potential alternatives. However, an estimation of a specific parallel firmware design's prospective performance is challenging due to the system's complexity. This is particularly true, as a parallelization is required that fits a variety of load scenarios in terms of the machines being controlled. Thus, this thesis specifies an application-oriented method that supports the design decisions to be taken when migrating an existing single-core firmware to a homogeneous multi-core architecture. This is achieved by automatically building adequate firmware models based on dynamic firmware profiling under multiple representative load scenarios. These models are then enhanced by the firmware developers' expert knowledge before multi-objective genetic algorithms are applied for exploring the design space of parallelization alternatives. Finally, a specific solution from the retrieved Pareto front can be selected on basis of its evaluation metrics for an implementation by a developer. This thesis concludes with a case study that applies the aforementioned method to a numerical control firmware and thereby reveals its potential of supporting a firmware parallelization in a comprehensive way. KW - Mehrkernprozessor KW - Steuerungstechnik KW - Parallelisierung KW - Evolutionärer Algorithmus KW - Virtualisierung KW - Software-Profiling KW - Software-Modellierung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106239 SN - 978-3-95826-010-8 (Print) SN - 978-3-95826-011-5 (online) PB - Würzburg University Press CY - Würzburg ER - TY - THES A1 - Walter, Dominik T1 - Adaptive Control of Ultrashort Laser Pulses for High-Harmonic Generation T1 - Adaptive Kontrolle ultrakurzer Laserpulse zur Erzeugung Hoher Harmonischer N2 - The generation of high harmonics is an ideal method to convert frequencies of the infrared- or visible range into the soft x-ray range. This process demands high laser intensities that are nowadays supplied by femtosecond laser systems. As the temporal and spatial coherence properties of the laser are transferred during the conversion process, the generated high harmonics will propagate as a beam with high peak-brightness. Under ideal conditions the generation of soft-x-ray pulses shorter than one femtosecond is possible. These properties are exploited in many applications like time-resolved x-ray spectroscopy. The topic of this thesis is the generation and optimization of high harmonics. A variety of conversion setups is investigated (jet of noble gas atoms, gas-filled hollow-fiber, water microdroplets) and theoretical models present ideas to further enhance the conversion efficiency (using excited atoms or aligned molecules). In different setups the peak intensity of the fundamental laser pulses is increased by spectral broadening and subsequent temporal compression. This is achieved with the help of pulse shaping devices that can modify the spectral phase and therefore also the temporal intensity distribution of laser pulses. These pulse shaping devices are controlled by an evolutionary algorithm. With this setup not only adaptive compression of laser pulses is possible, but also the engineering of specific laser pulse shapes to optimize an experimental output. This setup was used to influence the process of high harmonic generation. It is demonstrated that the spectral distribution of the generated soft-x-ray radiation can be controlled by temporal pulse shaping. This method to tailor high harmonics is complemented by spatial shaping techniques. These findings demonstrate the realization of a tunable source of soft-x-ray radiation. N2 - Die Erzeugung hoher Harmonischer ist eine ideale Methode zur Frequenzkonversion von Licht aus dem sichtbaren- oder Infrarotbereich in den weichen Röntgenbereich. Für diesen Prozess werden hohe Laserintensitäten benötigt, die heutzutage von Femtosekundenlasersystemen bereitgestellt werden können. Da die zeitlichen und räumlichen Kohärenzeigenschaften des Lasers während der Ereugung der hohen Harmonischen Frequenzen nicht verlorengehen, erhält man unter geeigneten Bedingungen räumlich gerichete Pulse weicher Röntgenstrahlung mit Pulsdauern unter einer Femtosekunde. Die hohe Frequenz der erzeugten Strahlung und die kurze Zeitstruktur sind für eine Vielzahl von Anwendungen von grossem Nutzen, z.B. der zeitaufgelösten Röntgenspektroskopie. Die vorliegende Arbeit beschäftigt sich insbesondere mit der Erzeugung und Optimierung Hoher Harmonischer. Es werden experimentelle Ergebnisse unterschiedlicher Aufbauten zur Frequenzkonversion untersucht (Gas Strahl aus Edelgasatomen, gasgefüllte Hohlfaser, Wasser-Mikrotröpfchen) und theoretische Modelle zur effizienteren Erzeugung hoher Harmonischer (Erzeugung in angeregten Atomen oder ausgericheten Molekülen). Um die zur Verfügung stehende Laserintensität weiter zu erhöhen, werden verschiedene Aufbauten zur spektralen Verbreiterung und anschliessenden zeitlichen Kompression genutzt. Dabei kommen Pulsformer zum Einsatz, mit denen sich die spektrale Phase der Laserpulse, und damit gleichzeitig deren zeitlicher Intensitätsverlauf, kontrollieren lässt. Die Pulsformer werden von einem evolutionären Algorithmus gesteuert, wodurch beispielsweise eine automatisierte Pulskompression möglich ist oder Pulsformen erzeugt werden können, die gezielt das Ergebnis eines Experimentes optimieren. Mithilfe eines solchen adaptiven optischen Aufbaus ist es möglich auch den Prozess der Erzeugung hoher Harmonischer zu beeinflussen. Wie gezeigt wird, lässt dich damit die spektrale Verteilung hoher Harmonischer steuern. Der Grad an Kontrolle der erzeugten Strahlung kann durch räumliche Pulsformung noch weiter erhöht werden. Somit ist eine durchstimmbare Quelle köhärenter weicher Röntgenstrahlung realisiert. KW - Frequenzvervielfachung KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Adaptivregelung KW - ultrakurz KW - Hohe Harmonische KW - Pulsformung KW - Evolutionärer Algorithmus KW - Adaptive Optimierung KW - ultrashort KW - high harmonic generation KW - pulse shaping KW - evolutionary algorithm KW - adaptive optimization Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21975 ER -