TY - THES A1 - Michel, René T1 - Simulation and Estimation in Multivariate Generalized Pareto Models T1 - Simulationen und Schätzverfahren in multivariaten verallgemeinerten Pareto-Modellen N2 - The investigation of multivariate generalized Pareto distributions (GPDs) in the framework of extreme value theory has begun only lately. Recent results show that they can, as in the univariate case, be used in Peaks over Threshold approaches. In this manuscript we investigate the definition of GPDs from Section 5.1 of Falk et al. (2004), which does not differ in the area of interest from those of other authors. We first show some theoretical properties and introduce important examples of GPDs. For the further investigation of these distributions simulation methods are an important part. We describe several methods of simulating GPDs, beginning with an efficient method for the logistic GPD. This algorithm is based on the Shi transformation, which was introduced by Shi (1995) and was used in Stephenson (2003) for the simulation of multivariate extreme value distributions of logistic type. We also present nonparametric and parametric estimation methods in GPD models. We estimate the angular density nonparametrically in arbitrary dimension, where the bivariate case turns out to be a special case. The asymptotic normality of the corresponding estimators is shown. Also in the parametric estimations, which are mainly based on maximum likelihood methods, the asymptotic normality of the estimators is shown under certain regularity conditions. Finally the methods are applied to a real hydrological data set containing water discharges of the rivers Altmühl and Danube in southern Bavaria. N2 - Die Untersuchung der multivariaten verallgemeinerten Pareto-Verteilungen (GPDs) im Rahmen der Extremwerttheorie hat erst kürzlich begonnen. Neueste Ergebnisse zeigen, dass diese wie im univariaten Fall bei Peaks over Threshold-Ansätzen angewendet werden können. In dieser Arbeit verwenden wir die Definition einer GPD aus Abschnitt 5.1 von Falk et al. (2004), die sich im interessierenden Bereich nicht von der anderer Autoren unterscheidet. Wir zeigen zuerst einige theoretische Eigenschaften und stellen wichtige Beispiele von GPDs vor. Zur weiteren Untersuchung dieser Verteilungen sind Simulationen unerläßlich. Wir stellen mehrere Methoden zur Simulation von GPDs vor, beginnend mit einer effizienten Methode für die logistische GPD. Der entsprechende Algorithmus basiert auf der Shi-Transformation, die von Shi (1995) eingeführt und von Stephenson (2003) verwendet wurde, um logistische multivariate Extremwertverteilungen zu simulieren. Wir führen auch nicht-parametrische und parametrische Schätzverfahren in GPD-Modellen ein. Wir schätzen die Angular Density in beliebiger Dimension, wobei sich der bivariate Fall als ein besonderer herausstellt. Die asymptotische Normalität der entsprechenden Schätzer wird gezeigt. Ebenso zeigen wir für die parametrischen Schätzungen, die hauptsächlich Maximum-Likelihood-Methoden verwenden, die asymptotische Normalität unter geeigneten Regularitätsbedingungen Zum Schluß werden die Methoden auf einen realen hydrologischen Datensatz, bestehend aus Abflussraten der Flüsse Altmühl und Donau in Südbayern, angewendet. KW - Pareto-Verteilung KW - Multivariate verallgemeine Pareto-Verteilungen KW - Extremwerttheorie KW - Überschreitungen KW - Simulation KW - Angular Density KW - Multivariate Generalized Pareto Distributions KW - Peaks over Threshold KW - Extreme Value Theory KW - Simulation KW - Angular Density Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18489 ER - TY - THES A1 - Tichy, Diana T1 - On the Fragility Index T1 - Über den Fragilitätsindex N2 - The Fragility Index captures the amount of risk in a stochastic system of arbitrary dimension. Its main mathematical tool is the asymptotic distribution of exceedance counts within the system which can be derived by use of multivariate extreme value theory. Thereby the basic assumption is that data comes from a distribution which lies in the domain of attraction of a multivariate extreme value distribution. The Fragility Index itself and its extension can serve as a quantitative measure for tail dependence in arbitrary dimensions. It is linked to the well known extremal index for stochastic processes as well the extremal coefficient of an extreme value distribution. N2 - Der Fragilitätsindex erfasst das Risiko des Zusammenbruchs eines stochastischen Systems beliebiger Dimension. Wesentlicher Baustein dieser mathematischen Größe ist dabei die asymptotische Verteilung der Überschreitungsanzahl innerhalb des stochastischen Systems. Die Herleitung basiert auf wesentlichen Erkenntnissen aus der multivariaten Extremwerttheorie. Die Hauptannahme besteht darin, dass Realisationen einer Zufallsgröße von einer Verteilung erzeugt werden, welche im Anziehungsbereich einer multivariaten Extremwertverteilung liegt. Der Fragilitätsindex und seine Erweiterung stellen ein quantitatives Maß beliebiger Dimension für Abhängigkeiten zwischen extremen Ereignissen dar. Er steht dabei in direkter Verbindung zum Extremalindex für stochastische Prozesse und zum Extremalkoeffizienten für Extremwertverteilungen. KW - Extremwertstatistik KW - Stochastisches System KW - Fragilitätsindex KW - Extremwerttheorie KW - Abhängigkeitsmaß KW - Überschreitungsanzahl KW - Fragility Index KW - tail dependence KW - extreme value theory KW - exceedance counts KW - extremal coefficient Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73610 ER - TY - THES A1 - Hofmann, Martin T1 - Contributions to Extreme Value Theory in the Space C[0,1] T1 - Beiträge zur Extremwerttheorie im Raum C[0,1] N2 - We introduce some mathematical framework for extreme value theory in the space of continuous functions on compact intervals and provide basic definitions and tools. Continuous max-stable processes on [0,1] are characterized by their “distribution functions” G which can be represented via a norm on function space, called D-norm. The high conformity of this setup with the multivariate case leads to the introduction of a functional domain of attraction approach for stochastic processes, which is more general than the usual one based on weak convergence. We also introduce the concept of “sojourn time transformation” and compare several types of convergence on function space. Again in complete accordance with the uni- or multivariate case it is now possible to get functional generalized Pareto distributions (GPD) W via W = 1 + log(G) in the upper tail. In particular, this enables us to derive characterizations of the functional domain of attraction condition for copula processes. Moreover, we investigate the sojourn time above a high threshold of a continuous stochastic process. It turns out that the limit, as the threshold increases, of the expected sojourn time given that it is positive, exists if the copula process corresponding to Y is in the functional domain of attraction of a max-stable process. If the process is in a certain neighborhood of a generalized Pareto process, then we can replace the constant threshold by a general threshold function and we can compute the asymptotic sojourn time distribution. N2 - Es wird ein Zugang zur Extremwerttheorie auf dem Raum C[0,1] gegeben. Nach Charakterisierung und Analyse standard max-stabiler Prozesse, wird ein "funktionaler Anziehungsbereich" für standard max-stabile Prozesse vorgeschlagen, der allgemeiner ist als der übliche, der mittels schwacher Konvergenz definiert wird. Schließlich werden Verweildauern stetiger Prozesse über hohen Schwellenwerten betrachtet. KW - Extremwertstatistik KW - stochastischer Prozess KW - Extremwerttheorie KW - extreme value theory KW - stochastic processes KW - functional D-norm Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74405 ER - TY - THES A1 - Aulbach, Stefan T1 - Contributions to Extreme Value Theory in Finite and Infinite Dimensions: With a Focus on Testing for Generalized Pareto Models T1 - Beiträge zur endlich- und unendlichdimensionalen Extremwerttheorie: Mit einem Schwerpunkt auf Tests auf verallgemeinerte Pareto-Modelle N2 - Extreme value theory aims at modeling extreme but rare events from a probabilistic point of view. It is well-known that so-called generalized Pareto distributions, which are briefly reviewed in Chapter 1, are the only reasonable probability distributions suited for modeling observations above a high threshold, such as waves exceeding the height of a certain dike, earthquakes having at least a certain intensity, and, after applying a simple transformation, share prices falling below some low threshold. However, there are cases for which a generalized Pareto model might fail. Therefore, Chapter 2 derives certain neighborhoods of a generalized Pareto distribution and provides several statistical tests for these neighborhoods, where the cases of observing finite dimensional data and of observing continuous functions on [0,1] are considered. By using a notation based on so-called D-norms it is shown that these tests consistently link both frameworks, the finite dimensional and the functional one. Since the derivation of the asymptotic distributions of the test statistics requires certain technical restrictions, Chapter 3 analyzes these assumptions in more detail. It provides in particular some examples of distributions that satisfy the null hypothesis and of those that do not. Since continuous copula processes are crucial tools for the functional versions of the proposed tests, it is also discussed whether those copula processes actually exist for a given set of data. Moreover, some practical advice is given how to choose the free parameters incorporated in the test statistics. Finally, a simulation study in Chapter 4 compares the in total three different test statistics with another test found in the literature that has a similar null hypothesis. This thesis ends with a short summary of the results and an outlook to further open questions. N2 - Gegenstand der Extremwerttheorie ist die wahrscheinlichkeitstheoretische Modellierung von extremen, aber seltenen Ereignissen. Es ist wohlbekannt, dass sog. verallgemeinerte Pareto-Verteilungen, die in Kapitel 1 kurz zusammengefasst werden, die einzigen Wahrscheinlichkeitsverteilungen sind, mit denen sich Überschreitungen über hohe Schwellenwerte geeignet modellieren lassen, wie z. B. Fluthöhen, die einen Deich überschreiten, Erdbeben einer gewissen Mindeststärke, oder - nach einer einfachen Transformation - Aktienkurse, die einen festen Wert unterschreiten. Jedoch gibt es auch Fälle, in denen verallgemeinerte Pareto-Modelle fehlschlagen könnten. Deswegen beschäftigt sich Kapitel 2 mit gewissen Umgebungen einer verallgemeinerten Pareto-Verteilung und leitet mehrere statistische Tests auf diese Umgebungen her. Dabei werden sowohl multivariate Daten als auch Datensätze bestehend aus stetigen Funktionen auf [0,1] betrachtet. Durch Verwendung einer Notation basierend auf sog. D-Normen wird insbesondere gezeigt, dass die vorgestellten Testverfahren beide Fälle, den multivariaten und den funktionalen, auf natürliche Weise miteinander verbinden. Da das asymptotische Verhalten dieser Tests von einigen technischen Voraussetzungen abhängt, werden diese Annahmen in Kapitel 3 detaillierter analysiert. Insbesondere werden Beispiele für Verteilungen betrachtet, die die Nullhypothese erfüllen, und solche, die das nicht tun. Aufgrund ihrer Bedeutung für die funktionale Version der Tests wird auch der Frage nachgegangen, ob sich ein Datensatz durch stetige Copula-Prozesse beschreiben lässt. Außerdem wird auf die Wahl der freien Parameter in den Teststatistiken eingegangen. Schließlich befasst sich Kapitel 4 mit den Ergebnissen einer Simulationsstudie, um die insgesamt drei Testverfahren mit einem ähnlichen Test aus der Literatur zu vergleichen. Diese Arbeit endet mit einer kurzen Zusammenfassung und einem Ausblick auf weiterführende Fragestellungen. KW - Extremwertstatistik KW - Pareto-Verteilung KW - Copula KW - Stochastischer Prozess KW - Anpassungstest KW - Extreme Value Theory KW - Generalized Pareto Distribution KW - D-Norm KW - Copula KW - Stochastic Process KW - Continuous Sample Path KW - Nonparametric Inference KW - Goodness-of-Fit Test KW - Order Statistics KW - Monte Carlo Simulation KW - Extremwerttheorie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127162 N1 - Details sind zu finden unter http://www.ism.ac.jp/editsec/aism/aism-permissions.html und http://www.ism.ac.jp/editsec/aism/aism-info-author.html ER -