TY - THES A1 - Heldens, Wieke T1 - Use of airborne hyperspectral data and height information to support urban micro climate characterisation T1 - Anwendung von Hyperspektraldaten und Höheninformationen zur Unterstützung der städtischen Mikroklimacharakterisierung N2 - The urban micro climate has been increasingly recognised as an important aspect for urban planning. Therefore, urban planners need reliable information on the micro climatic characteristics of the urban environment. A suitable spatial scale and large spatial coverage are important requirements for such information. This thesis presents a conceptual framework for the use of airborne hyperspectral data to support urban micro climate characterisation, taking into account the information needs of urban planning. The potential of hyperspectral remote sensing in characterising the micro climate is demonstrated and evaluated by applying HyMap airborne hyperspectral and height data to a case study of the German city of Munich. The developed conceptual framework consists of three parts. The first is concerned with the capabilities of airborne hyperspectral remote sensing to map physical urban characteristics. The high spatial resolution of the sensor allows to separate the relatively small urban objects. The high spectral resolution enables the identification of the large range of surface materials that are used in an urban area at up to sub-pixel level. The surface materials are representative for the urban objects of which the urban landscape is composed. These spatial urban characteristics strongly influence the urban micro climate. The second part of the conceptual framework provides an approach to use the hyperspectral surface information for the characterisation of the urban micro climate. This can be achieved by integrating the remote sensing material map into a micro climate model. Also spatial indicators were found to provide useful information on the micro climate for urban planners. They are commonly used in urban planning to describe building blocks and are related to several micro climatic parameters such as temperature and humidity. The third part of the conceptual framework addresses the combination and presentation of the derived indicators and simulation results under consideration of the planning requirements. Building blocks and urban structural types were found to be an adequate means to group and present the derived information for micro climate related questions to urban planners. The conceptual framework was successfully applied to a case study in Munich. Airborne hyperspectral HyMap data has been used to derive a material map at sub-pixel level by multiple endmember linear spectral unmixing. This technique was developed by the German Research Centre for Geosciences (GFZ) for applications in Dresden and Potsdam. A priori information on building locations was used to support the separation between spectrally similar materials used both on building roofs and non-built surfaces. In addition, surface albedo and leaf area index are derived from the HyMap data. The sub-pixel material map supported by object height data is then used to derive spatial indicators, such as imperviousness or building density. To provide a more detailed micro climate characterisation at building block level, the surface materials, albedo, leaf area index (LAI) and object height are used as input for simulations with the micro climate model ENVI-met. Concluding, this thesis demonstrated the potential of hyperspectral remote sensing to support urban micro climate characterisation. A detailed mapping of surface materials at sub-pixel level could be performed. This provides valuable, detailed information on a large range of spatial characteristics relevant to the assessment of the urban micro climate. The developed conceptual framework has been proven to be applicable to the case study, providing a means to characterise the urban micro climate. The remote sensing products and subsequent micro climatic information are presented at a suitable spatial scale and in understandable maps and graphics. The use of well-known spatial indicators and the framework of urban structural types can simplify the communication with urban planners on the findings on the micro climate. Further research is needed primarily on the sensitivity of the micro climate model towards the remote sensing based input parameters and on the general relation between climate parameters and spatial indicators by comparison with other cities. N2 - Für die Stadtplanung werden klimatische Aspekte zunehmend wichtiger, weil die Klimaveränderung besonders in Städten die Lebensqualität beeinflussen kann. Hierfür benötigen Stadtplaner detaillierte Basis-Informationen über die mikroklimatischen Eigenschaften des urbanen Gebietes. Dabei sind ein ausreichend detaillierter Maß stab sowie eine groß flächige Abdeckung wichtige Voraussetzungen. Das Ziel dieser Dissertation ist die Entwicklung und Anwendung von einem konzeptionellen Rahmenwerk, wie räumlich und spektral höchst aufgelöste Fernerkundungsdaten zur stadtklimatischen Charakterisierung verwendet werden können. Hierbei sollten die Anforderungen der Stadtplaner berücksichtigt werden. Zusätzliches Ziel ist das Potenzial dieser sog. hyperspektralen Fernerkundung zur Charakterisierung des Mikroklimas zu demonstrieren. Dazu wird das konzeptionelle Rahmenwerk an Hand des Fallbeispiels der Stadt München unter Verwendung von HyMap-Daten angewendet und evaluiert. Das entwickelte Rahmenwerk besteht aus drei Teilen: Der erste Teil beschreibt, wie relevante Parameter aus Daten eines flugzeuggetragenen Hyperspektralsensors abgeleitet werden können. Der zweite Teil des Konzepts beschreibt einen Ansatz, wie hyperspektrale Datenprodukte für die Charakterisierung des Mikroklimas angewendet werden können. Im dritten Teil des Rahmenwerkes wird angesprochen wie unter Berücksichtigung der Anforderungen der Stadtplaner die abgeleiteten Indikatoren und Klimasimulationen kombiniert und aufbereitet werden können. Dieses Rahmenwerk wurde für das konkrete Fallbeispiel der Stadt München erfolgreich angewendet. Daten des flugzeuggetragenen HyMap-Hyperspektralsensors wurden verwendet, um die Subpixel-Materialkarten abzuleiten. Mittels einer 'multiple endmember spectral mixture analyis', welche durch das Deutschen GeoForschungszentrum (GFZ) für Anwendungen in Dresden und Potsdam entwickelt wurde, können die Oberflächenmaterialen abgeleitet werden. Zur Verbesserung des Produkts wurden zusätzlich a-priori-Informationen zu den Gebäudestandorten integriert, um die Unterscheidung von Gebäudedächern und Freiflächen mit spektral ähnlichen Materialien zu unterstützen. Die resultierende Subpixel-Materialkarte ist das Schlüsselprodukt für den entwickelten Ansatz. Als ein weiters Produkt wurden Albedo und Blattflächenindex aus den Hyperspektraldaten abgeleitet. Im nächsten Schritt wurde die Subpixel-Materialkarte mit den Höhendaten kombiniert und daraus räumliche Indikatoren wie Versiegelungsgrad oder Bebauungsdichte abgeleitet. Solche Indikatoren werden in der Stadtplanung häufig verwendet, um Baublöcke zu charakterisieren. Zusätzlich besteht ein Zusammenhang zwischen diesen Indikatoren und verschiedenen stadtklimatischen Parametern wie der Temperatur oder der Luftfeuchte. Für eine detaillierte Charakterisierung des Mikroklimas innerhalb eines Baublocks wurden die Fernerkundungsprodukte (Oberflächenmaterial, Albedo, Blattflächenindex und Höhendaten) als Inputdaten für das Mikroklimamodell ENVI-met verwendet. Zusammenfassend demonstriert diese Dissertation das Potenzial der hyperspektralen Fernerkundung zur Unterstützung von Mikroklima-Charakterisierung. Oberflächenmaterialien konnten hierfür thematisch detailliert bis auf sub-Pixel Level identifiziert werden. Mit den erzeugten hyperspektralen Fernerkundungsprodukten konnte eine detaillierte Beschreibung der relevanten räumlichen Merkmale erzielt werden, welche von groß er Relevanz für die Bewertung des städtischen Mikroklimas sind. Das entwickelte konzeptionelle Rahmenwerk hat sich für das Fallbeispiel als sehr geeignet erwiesen. Es ermöglichte die Charakterisierung des städtischen Mikroklima auf Basis des ENVI-met Modells. Die Fernerkundungsprodukte und die darauf basierenden Mikroklima-Informationen wurden mit einem geeigneten räumlichen Maß stab und als intuitiv verständliche Karten und Abbildungen dargestellt. Die Verwendung allgemein bekannter räumlicher Indikatoren und das Klassifikationsschema nach Stadtstrukturtypen vereinfachen die Kommunikation mit Stadtplanern über die stadtklimatischen Erkenntnisse. Weitere Forschungsschritte sind unter anderem notwendig um die Sensitivität des Mikroklimamodells gegenüber den fernerkundungsbasierten Inputparametern genauer zu charakterisieren und um die allgemeine Beziehungen zwischen Klimaparametern und räumlichen Indikatoren durch den Vergleich mit weiteren Städten näher zu untersuchen. KW - Mikroklima KW - Modellierung KW - Stadtklima KW - Fernerkundung KW - hyperspektrale Fernerkundung KW - Höhendaten KW - Mikroklimamodellierung KW - lineare spektrale Entmischung KW - HyMap KW - hyperspectral remote sensing KW - height data KW - micro climate modelling KW - linear spectral unmixing KW - HyMap Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48935 ER - TY - THES A1 - König, Sebastian Thomas T1 - Temperature-driven assembly processes of Orthoptera communities: Lessons on diversity, species traits, feeding interactions, and associated faecal microorganisms from elevational gradients in Southern Germany (Berchtesgaden Alps) T1 - Temperaturabhängige Zusammensetzungsprozesse von Heuschreckengemeinschaften: Lektionen über die Diversität, Artmerkmale, Fraßinteraktionen, und Kot-Mikroorganismen von Höhengradienten in Süddeutschland (Berchtesgadener Alpen) N2 - Chapter I: Introduction Temperature is a major driver of biodiversity and abundance patterns on our planet, which becomes particularly relevant facing the entanglement of an imminent biodiversity and climate crisis. Climate shapes the composition of species assemblages either directly via abiotic filtering mechanisms or indirectly through alterations in biotic interactions. Insects - integral elements of Earth’s ecosystems - are affected by climatic variation such as warming, yet responses vary among species. While species’ traits, antagonistic biotic interactions, and even species’ microbial mutualists may determine temperature-dependent assembly processes, the lion’s share of these complex relationships remains poorly understood due to methodological constraints. Mountains, recognized as hotspots of diversity and threatened by rapidly changing climatic conditions, can serve as natural experimental settings to study the response of insect assemblages and their trophic interactions to temperature variation, instrumentalizing the high regional heterogeneity of micro- and macroclimate. With this thesis, we aim to enhance our mechanistic understanding of temperature-driven assembly processes within insect communities, exemplified by Orthoptera, that are significant herbivores in temperate mountain grassland ecosystems. Therefore, we combined field surveys of Orthoptera assemblages on grassland sites with molecular tools for foodweb reconstruction, primarily leveraging the elevational gradients offered by the complex topography within the Berchtesgaden Alpine region (Bavaria, Germany) as surrogate for temperature variation (space-for-time substitution approach). In this framework, we studied the effects of temperature variation on (1) species richness, abundance, community composition, and interspecific as well as intraspecific trait patterns, (2) ecological feeding specialisation, and (3) previously neglected links to microbial associates found in the faeces. Chapter II: Temperature-driven assembly processes Climate varies at multiple scales. Since microclimate is often overlooked, we assessed effects of local temperature deviations on species and trait compositions of insect communities along macroclimatic temperature gradients in Chapter II. Therefore, we employed joint species distribution modelling to explore how traits drive variation in the climatic niches of Orthoptera species at grassland sites characterized by contrasting micro- and macroclimatic conditions. Our findings revealed two key insights: (1) additive effects of micro- and macroclimate on the diversity, but (2) interactive effects on the abundance of several species, resulting in turnover and indicating that species possess narrower climatic niches than their elevational distributions might imply. This chapter suggests positive effects of warming on Orthoptera, but also highlights that the interplay of macro- and microclimate plays a pivotal role in structuring insect communities. Thus, it underscores the importance of considering both elements when predicting the responses of species to climate change. Additionally, this chapter revealed inter- and intraspecific effects of traits on the niches and distribution of species. Chapter III: Dietary specialisation along climatic gradients A crucial trait linked to the position of climatic niches is dietary specialisation. According to the ‘altitudinal niche-breadth hypothesis’, species of high-elevation habitats should be less specialized compared to their low-elevation counterparts. However, empirical evidence on shifts in specialization is scarce for generalist insect herbivores and existing studies often fail to control for the phylogeny and abundance of interaction partners. In Chapter III, we used a combination of field observations and amplicon sequencing to reconstruct dietary relationships between Orthoptera and plants along an extensive temperature gradient. We did not find close but flexible links between individual grasshopper and plant taxa in space. While interaction network specialisation increased with temperature, the corrected dietary specialisation pattern peaked at intermediate elevations on assemblage level. These nuanced findings demonstrate that (1) resource availability, (2) phylogenetic relationships, and (3) climate can affect empirical foodwebs intra- and interspecifically and, hence, the dietary specialisation of herbivorous insects. In this context, we discuss that the underlying mechanisms involved in shaping the specialisation of herbivore assemblages may switch along temperature clines. Chapter IV: Links between faecal microbe communities, feeding habits, and climate Since gut microbes affect the fitness and digestion of insects, studying their diversity could provide novel insights into specialisation patterns. However, their association with insect hosts that differ in feeding habits and specialisation has never been investigated along elevational climatic gradients. In Chapter IV, we utilized the dietary information gathered in Chapter III to characterize links between insects with distinct feeding behaviour and the microbial communities present in their faeces, using amplicon sequencing. Both, feeding and climate affected the bacterial communities. However, the large overlap of microbes at site level suggests that common bacteria are acquired from the shared feeding environment, such as the plants consumed by the insects. These findings emphasize the influence of a broader environmental context on the composition of insect gut microbial communities. Chapter V: Discussion & Conclusions Cumulatively, the sections of this dissertation provide support for the hypothesis that climatic conditions play a role in shaping plant–herbivore systems. The detected variation of taxonomic and functional compositions contributes to our understanding of assembly processes and resulting diversity patterns within Orthoptera communities, shedding light on the mechanisms that structure their trophic interactions in diverse climates. The combined results presented suggest that a warmer climate could foster an increase of Orthoptera species richness in Central European semi-natural grasslands, also because the weak links observed between insect herbivores and plants are unlikely to limit decoupled range shifts. However, the restructuring of Orthoptera communities in response to warmer temperatures depends on species' traits such as moisture preferences or phenology. Notably, we were able to demonstrate a crucial role of microclimate for many species, partly unravelling narrower climatic niches than their elevational ranges suggest. We found evidence that not only Orthoptera community composition, specialisation, and traits varied along elevational gradients, but even microbial communities in the faeces of Orthoptera changed, which is a novel finding. This complex restructuring and reassembly of communities, coupled with the nonlinear specialisation of trophic interactions and a high diversity of associated bacteria, emphasize our currently incomplete comprehension of how ecosystems will develop under future climatic conditions, demanding caution in making simplified predictions for biodiversity change under climate warming. Since these predictions may benefit from including biotic interactions and both, micro- and macroclimate based on our findings, conservation authorities and practitioners must not neglect improving microclimatic conditions to ensure local survival of a diverse set of threatened and demanding species. In this context, mountains can play a pivotal role for biodiversity conservation since these offer heterogeneous microclimatic conditions in proximity that can be utilized by species with distinct niches. N2 - Kapitel I: Einleitung Die Temperatur ist eine wichtige Triebkraft hinter den Artenvielfalts- und Abundanzmustern auf unserem Planeten, was angesichts der Verflechtung der unmittelbar bevorstehenden Biodiversitäts- und Klimakrise besonders relevant ist. Das Klima strukturiert die Artenvielfalt direkt durch abiotische Filtermechanismen oder indirekt durch Veränderungen biotischer Wechselwirkungen. Insekten - wesentliche Bestandteile der Ökosysteme der Erde - sind von klimatischen Veränderungen wie der Erwärmung betroffen, reagieren aber je nach Art unterschiedlich. Während die Merkmale der Arten, antagonistische biotische Interaktionen und sogar die mikrobiellen Partner der Arten temperaturabhängige Zusammensetzungsprozesse bestimmen können, bleibt ein Großteil dieser komplexen Beziehungen aufgrund methodischer Einschränkungen nach wie vor schlecht verstanden. Gebirge, die als Hotspots der Diversität gelten und von sich rasch verändernden klimatischen Bedingungen bedroht sind, können durch Nutzung der großen regionalen Heterogenität der Klein- und Großklimate als natürliche Experimente dienen, um die Reaktion von Insektengemeinschaften und deren trophischen Interaktionen auf Temperaturänderungen zu untersuchen. Mit dieser Arbeit möchten wir einen Beitrag zum mechanistischen Verständnis der temperaturbedingten Zusammensetzungsprozesse von Insektengemeinschaften leisten, am Beispiel von Heuschrecken, die bedeutende Pflanzenfresser in Grünlandökosystemen der gemäßigten Breiten sind. Hierfür kombinierten wir Felduntersuchungen von Heuschreckengemeinschaften in Grünlandstandorten mit molekularen Methoden zur Rekonstruktion von Nahrungsbeziehungen, wobei wir hauptsächlich die Höhengradienten, die die komplexe Topografie der Berchtesgadener Alpenregion (Bayern, Deutschland) bietet, stellvertretend für Temperaturveränderungen verwendeten (Raum-Zeit-Substitutionsansatz). In diesem Rahmen untersuchten wir die Auswirkungen von Temperaturvariation auf (1) den Artenreichtum, die Abundanz, die Zusammensetzung der Gemeinschaft und die inter- und intraspezifischen Merkmalsmuster, (2) die ökologische Nahrungsspezialisierung und (3) die bis dato vernachlässigte Verbindung zu den mikrobiellen Begleitarten im Kot. Kapitel II: Temperaturabhängige Zusammensetzungsprozesse Das Klima variiert auf verschiedenen Ebenen. Da Veränderungen im Kleinklima oft vernachlässigt werden, haben wir in Kapitel II die Auswirkungen der lokalen Temperaturunterschiede auf die Arten- und Merkmalszusammensetzung von Insektengemeinschaften entlang makroklimatischer Temperaturgradienten untersucht. Hierfür haben wir die Methode der gemeinsamen Artenverteilungsmodellierung verwendet, um zu untersuchen, wie Artmerkmale die Unterschiede in klimatischen Nischen von Heuschreckenarten auf Grünlandstandorten mit gegensätzlichen mikro- und makroklimatischen Bedingungen beeinflussen. Unsere Ergebnisse brachten zwei wichtige Erkenntnisse zutage: (1) additive Auswirkungen des Mikro- und Makroklimas auf die Vielfalt, aber (2) interaktive Effekte auf die Häufigkeit mehrerer Arten, die sich in Zusammensetzungsunterschieden niederschlagen und auf engere klimatische Nischen hinweisen, als es die Höhenverbreitung vermuten lässt. Dieses Kapitel deutet auf positive Auswirkungen einer Erwärmung auf Orthoptera hin, zeigt aber auch, dass das Zusammenspiel von Makro- und Mikroklima eine Schlüsselrolle bei der Strukturierung von Insektengemeinschaften spielt und beide Elemente bei der Vorhersage der Reaktionen von Arten auf den Klimawandel berücksichtigt werden sollten. Darüber hinaus wurden in diesem Kapitel die inter- und intraspezifischen Auswirkungen von Merkmalen auf die Nischen und die Verbreitung von Arten aufgezeigt. Kapitel III: Nahrungsspezialisierung entlang von Klimagradienten Ein entscheidendes Merkmal für die Lage der klimatischen Nische einer Art ist die Nahrungsspezialisierung. Nach der "Hypothese der Höhenlagen-abhängigen Nischenbreite" sollten Arten in hoch gelegenen Lebensräumen weniger spezialisiert sein als ihre Pendants in niedrigen Lagen. Empirische Belege für Verschiebungen in der Spezialisierung von generalistischen, herbivoren Insekten sind jedoch rar und es fehlt eine Berücksichtigung der Häufigkeit und Phylogenie von Interaktionspartnern. In Kapitel III haben wir eine Kombination aus Feldbeobachtungen und Amplikonsequenzierung verwendet, um die Nahrungsbeziehungen von Heuschrecken und Pflanzen entlang eines ausgedehnten Temperaturgradienten zu rekonstruieren. Wir konnten keine engen, sondern flexible Beziehungen zwischen einzelnen Herbivoren- und Pflanzentaxa feststellen. Während die Spezialisierung der Interaktionsnetzwerke mit der Temperatur zunahm, erreichte das korrigierte Muster der Nahrungsspezialisierung auf Gemeinschaftsebene seinen Höhepunkt in mittleren Höhenlagen. Diese differenzierten Ergebnisse zeigen, dass (1) die Verfügbarkeit von Ressourcen, (2) phylogenetische Beziehungen und (3) das Klima intra- und interspezifische empirische Nahrungsbeziehungen und damit die Nahrungsspezialisierung pflanzenfressender Insekten beeinflussen können. In diesem Kontext diskutieren wir, dass die zugrundeliegenden Mechanismen hinter der Nahrungsspezialisierung von herbivoren Insekten entlang von Temperaturgradienten wechseln könnten. Kapitel IV: Verbindungen zwischen Kotbakteriengemeinschaften, Ernährungsgewohnheiten und Klima. Da Darmbakterien die Fitness und Verdauung von Insekten beeinflussen, könnte die Untersuchung deren Vielfalt neue Erkenntnisse über Spezialisierungsmuster liefern. Ihre Verbindung mit Insekten, die sich in ihren Ernährungsgewohnheiten und ihrer Spezialisierung unterscheiden, wurde jedoch noch nie entlang klimatischer Höhengradienten untersucht. In Kapitel IV verwendeten wir Nahrungsinformationen aus Kapitel III, um mit Hilfe von Amplikonsequenzierung Verbindungen zwischen Insekten mit unterschiedlichem Ernährungsverhalten und mikrobiellen Gemeinschaften in deren Kot zu charakterisieren. Sowohl die Nahrung als auch das Klima hatten Auswirkungen auf die bakteriellen Gemeinschaften. Die große Überschneidung der Mikrobengemeinschaften auf Standortebene deutet jedoch darauf hin, dass gemeinsame Bakterien aus der geteilten Nahrungsumgebung, wie z.B. den von den Insekten verzehrten Pflanzen, stammen. Diese Ergebnisse unterstreichen den Einfluss eines breiteren Umweltkontextes auf die Zusammensetzung der mikrobiellen Gemeinschaften im Insektendarm. Kapitel V: Diskussion & Schlussfolgerungen Insgesamt stützen die Kapitel dieser Dissertation die Hypothese, dass klimatische Verhältnisse Pflanzen-Pflanzenfresser-Systeme prägen. Die festgestellten Unterschiede in der taxonomischen und funktionellen Zusammensetzung tragen zu unserem Verständnis der Zusammensetzungsprozesse und daraus resultierenden Diversitätsmustern von Heuschreckengemeinschaften sowie der Mechanismen bei, die deren trophische Interaktionen in verschiedenen Klimazonen strukturieren. Die Kombination der Ergebnisse deutet darauf hin, dass wärmeres Klima eine Zunahme des Heuschreckenartenreichtums in naturnahen Grünlandgebieten Mitteleuropas begünstigen könnte, auch weil die schwachen Verbindungen zwischen den herbivoren Insekten und Pflanzen entkoppelte Arealverschiebungen wahrscheinlich nicht limitieren. Jedoch könnten höhere Temperaturen die Zusammensetzung von Heuschreckengemeinschaften je nach den Merkmalen der Arten wie deren Feuchtigkeitsvorlieben oder der Schlupfphänologie verändern. Darüber hinaus konnten wir nachweisen, dass das Mikroklima für viele Arten eine entscheidende Rolle spielt, da es teilweise engere klimatische Nischen aufdeckt, als ihre Höhenverbreitung vermuten lassen. Wir fanden Hinweise darauf, dass sich nicht nur die Zusammensetzung, Spezialisierung und Merkmale der Heuschreckengemeinschaften entlang der Höhengradienten ändern, sondern dass sogar die mikrobiellen Gemeinschaften im Kot variieren, was eine neue Erkenntnis darstellt. Diese komplexe Umstrukturierung und Neuzusammensetzung von Gemeinschaften in Kombination mit der nichtlinearen Spezialisierung von Interaktionen und einer hohen Vielfalt an assoziierten Bakterien unterstreichen unser noch immer begrenztes Verständnis davon, wie sich Ökosysteme unter zukünftigen Klimabedingungen entwickeln werden, und mahnen zur Vorsicht bei vereinfachten Vorhersagen über die Veränderung der biologischen Vielfalt im Zuge der Klimaerwärmung. Da solche Vorhersagen auf Grundlage unserer Ergebnisse vom Einbezug biotischer Wechselwirkungen und des Mikro- und Makroklimas profitieren können, dürfen Naturschutzverantwortliche eine Verbesserung der mikroklimatischen Bedingungen nicht vernachlässigen, um das lokale Überleben einer Vielzahl bedrohter und anspruchsvoller Arten zu sichern. In diesem Zusammenhang können Berge eine entscheidende Rolle für den Erhalt der biologischen Vielfalt spielen, da sie in räumlicher Nähe heterogene mikroklimatische Bedingungen bieten, die von Arten mit unterschiedlichen Nischen genutzt werden können. KW - Heuschrecken KW - Mikroklima KW - Bayerische Alpen KW - Nahrung KW - Mikrobiom KW - biotic interactions KW - plant-herbivore-interactions KW - elevational gradients Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354608 ER - TY - THES A1 - Obermaier, Elisabeth T1 - Coexistence and resource use in space and time in a West African tortoise beetle community N2 - Tropical rain forests and coral reefs are usually regarded as the epitome of complexity and diversity. The mechanisms, however, that allow so many species to coexist continuously, still need to be unraveled. Earlier equilibrium models explain community organization with a strict niche separation and specialization of the single species, achieved mainly by interspecific competition and consecutive resource partitioning. Recent non-equilibrium or stochastic models see stochastic factors ("intermediate disturbances") as more important. Such systems are characterized by broad niche overlaps and an unpredictable species composition. Mechanisms of coexistence are most interesting where species interactions are strongest and species packing is highest. This is the case within a functional group or guild where species use similar resources. In this project a community of seven closely related leaf beetle species (Chrysomelidae: Cassidinae) was investigated which coexist on a common host plant system (fam. Convovulaceae) in a tropical moist savanna (Ivory Coast, Comoé-Nationalpark). A broad overlap in the seasonal phenology of the leaf beetle species stood in contrast to a distinct spatial niche differentiation. The beetle community could be separated in a savanna-group (host plant: Ipomoea) and in a river side group (host plant: Merremia). According to a correspondence analysis the five species at the river side, using a common host plant, Merremia hederacea, proved to be predictable in their species composition. They showed a small scale niche differentiation along the light gradient (microhabitats). Laboratory studies confirmed differences in the tolerance towards high temperatures (up to 50°C in the field). Physiological trade-offs between phenology, microclimate and food quality seem best to describe patterns of resource use of the beetle species. Further a phylogeny based on mt-DNA sequencing of the beetle community was compared to its ecological resource use and the evolution of host plant use was reconstructed N2 - Tropische Regenwälder und Korallenriffe werden gewöhnlich als die Zentren von Komplexität und Diversität betrachtet. Die Mechanismen hingegen, die so vielen Arten die Koexistenz erlauben, sind noch weitgehend unbekannt. Herkömmliche Gleichgewichtsmodelle erklären die Organisation von Gemeinschaften mit einer strengen Nischentrennung und Spezialisierung der einzelnen Arten, welche hauptsächlich durch interspezifische Konkurrenz und nachfolgende Ressourcenaufteilung zustande kommt. Neue Nichtgleichgewichts- oder stochastische Modelle sehen stochastische Faktoren ("mittlere Störungen") als wichtiger an. Solche Systeme sind durch breiten Nischenüberlappungen und eine unvorhersehbare Artenzusammensetzung charakterisiert. Mechanismen der Koexistenz sind dort am interessantesten, wo Arten-Interaktionen am stärksten und "Artenpackung" am höchsten ist. Dies ist innerhalb einer funktionalen Gruppe oder Gilde der Fall, wo Arten ähnliche Ressourcen nutzen. In diesem Projekt wurde eine Gemeinschaft von sieben eng verwandten Blattkäfern untersucht (Chrysomelidae: Cassidinae), welche auf einem gemeinsamen Wirtspflanzensystem (Fam. Convolulaceae) in einer tropischen Feuchtsavanne koexistieren (Elfenbeinküste, Comoé-Nationalpark). Einer breiten Überlappung in der jahreszeitlichen Phänologie der Blattkäferarten stand eine ausgeprägte räumliche Nischendifferenzierung gegenüber. Die Käfergemeinschaft konnte in eine Savannengruppe (Wirtspflanze: Ipomoea) und in eine Flußufergruppe (Wirtspflanze: Merremia) aufgeteilt werden. Die fünf Arten am Flußufer, welche eine gemeinsame Wirtspflanzenart, Merremia hederacea, nutzten, erwiesen sich in einer Korrespondenzanalyse in ihrer Artenzusammensetzung als vorhersagbar und nach dem Beschattungsgrad (Mikrohabitat) als kleinräumig eingenischt. Laborstudien bestätigten Unterschiede in der Toleranz gegenüber hohen Temperaturen (Temperaturmaxima im Freiland bis zu 50°C). Physiologische Trade-offs zwischen Phänologie, Mikroklima und Nahrungsqualität scheinen die Ressourcennutzungsmuster der Arten im Freiland am Besten zu beschreiben. Weiterhin wurde eine Phylogenie der Käfergemeinschaft aufgrund von mtDNA-Sequenzierung mit ihrer ökologischen Ressourcennutzung verglichen und die Evolution der Wirtspflanzennutzung rekonstruiert. T2 - Koexistenz und räumlich-zeitliche Ressourcennutzung in einer westafrikanischen Schildkäfergemeinschaft KW - Westafrika KW - Schildkäfer KW - Windengewächse KW - Synökologie KW - Chrysomelidae KW - Cassidinae KW - Koexistenz KW - Nahrungsqualität KW - natürliche Feinde KW - Mikroklima KW - Mikrohabitat KW - molekulare Phylogenie KW - Phänologie KW - Cassidinae KW - Chrysomelidae KW - coexistence KW - natural enemies KW - microclimate KW - microhabitat KW - molecular phylogeny KW - phenology KW - plant quality KW - tropics Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1815 ER -