TY - JOUR A1 - Hauptstein, Julia A1 - Forster, Leonard A1 - Nadernezhad, Ali A1 - Groll, Jürgen A1 - Teßmar, Jörg A1 - Blunk, Torsten T1 - Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues JF - International Journal of Molecular Sciences N2 - In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications. KW - biofabrication KW - bioink KW - chondrogenic differentiation KW - dual-stage crosslinking KW - hyaluronic acid KW - tethering KW - transforming growth factor-beta 1 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284239 SN - 1422-0067 VL - 23 IS - 2 ER - TY - JOUR A1 - Paxton, Naomi A1 - Smolan, Willi A1 - Böck, Thomas A1 - Melchels, Ferry A1 - Groll, Jürgen A1 - Jungst, Tomasz T1 - Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability JF - Biofabrication N2 - The development and formulation of printable inks for extrusion-based 3D bioprinting has been a major challenge in the field of biofabrication. Inks, often polymer solutions with the addition of crosslinking to form hydrogels, must not only display adequate mechanical properties for the chosen application but also show high biocompatibility as well as printability. Here we describe a reproducible two-step method for the assessment of the printability of inks for bioprinting, focussing firstly on screening ink formulations to assess fibre formation and the ability to form 3D constructs before presenting a method for the rheological evaluation of inks to characterise the yield point, shear thinning and recovery behaviour. In conjunction, a mathematical model was formulated to provide a theoretical understanding of the pressure-driven, shear thinning extrusion of inks through needles in a bioprinter. The assessment methods were trialled with a commercially available crème, poloxamer 407, alginate-based inks and an alginate-gelatine composite material. Yield stress was investigated by applying a stress ramp to a number of inks, which demonstrated the necessity of high yield for printable materials. The shear thinning behaviour of the inks was then characterised by quantifying the degree of shear thinning and using the mathematical model to predict the window of printer operating parameters in which the materials could be printed. Furthermore, the model predicted high shear conditions and high residence times for cells at the walls of the needle and effects on cytocompatibility at different printing conditions. Finally, the ability of the materials to recover to their original viscosity after extrusion was examined using rotational recovery rheological measurements. Taken together, these assessment techniques revealed significant insights into the requirements for printable inks and shear conditions present during the extrusion process and allow the rapid and reproducible characterisation of a wide variety of inks for bioprinting. KW - bioprinting KW - rheology KW - modelling KW - bioink Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254061 VL - 9 IS - 4 ER - TY - JOUR A1 - Hazur, Jonas A1 - Detsch, Rainer A1 - Karakaya, Emine A1 - Kaschta, Joachim A1 - Teßmar, Jörg A1 - Schneidereit, Dominik A1 - Friedrich, Oliver A1 - Schubert, Dirk W A1 - Boccaccini, Aldo R T1 - Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique JF - Biofabrication N2 - Many different biofabrication approaches as well as a variety of bioinks have been developed by researchers working in the field of tissue engineering. A main challenge for bioinks often remains the difficulty to achieve shape fidelity after printing. In order to overcome this issue, a homogeneous pre-crosslinking technique, which is universally applicable to all alginate-based materials, was developed. In this study, the Young’s Modulus after post-crosslinking of selected hydrogels, as well as the chemical characterization of alginate in terms of M/G ratio and molecular weight, were determined. With our technique it was possible to markedly enhance the printability of a 2% (w/v) alginate solution, without using a higher polymer content, fillers or support structures. 3D porous scaffolds with a height of around 5 mm were printed. Furthermore, the rheological behavior of different pre-crosslinking degrees was studied. Shear forces on cells as well as the flow profile of the bioink inside the printing nozzle during the process were estimated. A high cell viability of printed NIH/3T3 cells embedded in the novel bioink of more than 85% over a time period of two weeks could be observed. KW - alginate KW - bioprinting KW - rheology KW - bioink KW - pre-crosslinking KW - printability KW - shape fidelity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254030 VL - 12 IS - 4 ER - TY - THES A1 - Forster, Leonard T1 - Hyaluronic acid based Bioinks for Biofabrication of Mesenchymal Stem Cells T1 - Hyaluronsäure basierte Biotinten zur Biofabrikation von Mesenchymalen Stromazellen N2 - As a major component of the articular cartilage extracellular matrix, hyaluronic acid is a widely used biomaterial in regenerative medicine and tissue engineering. According to its well-known interaction with multiple chondrocyte surface receptors which positively affects many cellular pathways, some approaches by combining mesenchymal stem cells and hyaluronic acid-based hydrogels are already driven in the field of cartilage regeneration and fat tissue. Nevertheless, a still remaining major problem is the development of the ideal matrix for this purpose. To generate a hydrogel for the use as a matrix, hyaluronic acid must be chemically modified, either derivatized or crosslinked and the resulting hydrogel is mostly shaped by the mold it is casted in whereas the stem cells are embedded during or after the gelation procedure which does not allow for the generation of zonal hierarchies, cell density or material gradients. This thesis focuses on the synthesis of different hyaluronic acid derivatives and poly(ethylene glycol) crosslinkers and the development of different hydrogel and bioink compositions that allow for adjustment of the printability, integration of growth factors, but also for the material and biological hydrogel, respectively bioink properties. N2 - Hyaluronsäure basierte Biotinten zur Biofabrikation von Mesenchymalen Stromazellen [ausführliche Zusammenfassung: siehe pdf] KW - hyaluronic acid KW - bioink KW - biofabrication KW - mesenchymal stem cells KW - HASH KW - PEG KW - hydrogel Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298603 ER - TY - JOUR A1 - Groll, J A1 - Burdick, J A A1 - Cho, D-W A1 - Derby, B A1 - Gelinsky, M A1 - Heilshorn, S C A1 - Jüngst, T A1 - Malda, J A1 - Mironov, V A A1 - Nakayama, K A1 - Ovsianikov, A A1 - Sun, W A1 - Takeuchi, S A1 - Yoo, J J A1 - Woodfield, T B F T1 - A definition of bioinks and their distinction from biomaterial inks JF - Biofabrication N2 - Biofabrication aims to fabricate biologically functional products through bioprinting or bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are positioned at defined coordinates in three-dimensional space using automated and computer controlled techniques (Moroni et al 2018 Trends Biotechnol. 36 384–402), usually with the aid of biomaterials that are either (i) directly processed with the cells as suspensions/dispersions, (ii) deposited simultaneously in a separate printing process, or (iii) used as a transient support material. Materials that are suited for biofabrication are often referred to as bioinks and have become an important area of research within the field. In view of this special issue on bioinks, we aim herein to briefly summarize the historic evolution of this term within the field of biofabrication. Furthermore, we propose a simple but general definition of bioinks, and clarify its distinction from biomaterial inks. KW - bioink KW - biomaterial ink KW - definition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253993 VL - 11 IS - 1 ER -