TY - THES A1 - Ullherr, Maximilian T1 - Optimization of Image Quality in High-Resolution X-Ray Imaging T1 - Optimierung von Bildqualität in der hochauflösenden Röntgenbildgebung N2 - The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task. N2 - Das in dieser Arbeit entwickelte Modell und die Messmethode für SNR Spektren ergeben zuverlässige anwendungsspezifische Optima für die Bildqualität. Diese Optimierung kann verwendet werden, entweder um Bildqualität zu verstehen, um herauszufinden wie ein gutes Bildgebungsgerät gebaut werden kann oder um die Parameter eines existierenden Aufbaus (automatisch) festzulegen. ... KW - Bildqualität KW - Bildgebendes Verfahren KW - Computertomografie KW - x-ray imaging KW - x-ray microscopy KW - image quality KW - signal to noise ratio KW - computed tomography KW - x-ray inline phase contrast Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231171 ER - TY - THES A1 - Tschammler, Sabina T1 - Individuelle Anpassung des Röhrenstroms zur Dosisreduktion bei CT-Untersuchungen T1 - Individual selection of the tube current for dose reduction N2 - In der vorliegenden Arbeit sollte untersucht werden, welcher individuelle Röhrenstrom für unterschiedliche anatomische Regionen (Schädel, Hals, Thorax und Abdomen) nötig ist um diagnostisch aussagekräftige CT-Aufnahmen zu erzeugen. In diese prospektive Studie wurden 262 erwachsene Patienten aufgenommen. Ausgehend von seit Jahren bewährten Standardparametern wurde für jede anatomische Region anhand eines Iterationsschemas der minimal notwendige Röhrenstrom durch mehrmalige Wiederholung des Referenzscans ermittelt und mit diesem Wert die Untersuchung durchgeführt. Drei voneinander unabhängige Radiologen beurteilten die Bildqualität vor und nach Röhrenstromanpassung ohne Kenntnis der Expositionsparameter. Für Untersuchungen des Schädels (n=50) ergab sich ein Einsparungspotentials von 13 %, bei Thoraxuntersuchungen (n=67) von 57 % und bei Untersuchungen des Abdomens (n=119) eine maximale Einsparung von 45 % der Standarddosis. Dabei lag die Standarddosis für Schädel- (CTDIW= 41,7 mGy), Thorax- (CTDIW= 9,7 mGy) und Abdomenuntersuchungen (CTDIW = 11,7 mGy) bereits im untersten Quartil der deutschen Expositionspraxis. Für Abdomenuntersuchungen fand sich eine lineare Beziehung zwischen dem erforderlichen Röhrenstrom und dem in der a.p.-Richtung im Oberbauch gemessenen Körperdurchmesser. Der erforderliche Röhrenstrom variierte von 110 bis 325 mA (CTDIW=6,4-17,6 mGy) und die Körperdurchmesser von 16-35 cm. So ergibt sich, daß schlanke Patienten mit einem Durchmesser unter 27 cm bei den üblichen Expositionsparametern unnötig hohen Dosen ausgesetzt werden. Für diese Patienten kann man den notwendigen Röhrenstrom abschätzen, indem man den Körperdurchmesser mit ¾ multipliziert. Durch die individuelle Anpassung des Röhrenstroms an den Körperdurchmesser wird die Strahlenexposition bei Abdomen-CT-Untersuchungen um bis zu 45 % gesenkt ohne Beeinträchtigung der diagnostischen Aussagekraft. Für CT-Untersuchungen des Thorax ist das Einsparungspotential unabhängig vom Körperdurchmesser, im Mittel reicht ein Röhrenstrom von 73 mA (CTDIW= 4,2 mGy) aus. Bei CT-Untersuchungen des Gehirnschädels ergab sich das geringste Einsparpotential mit einer notwendigen Dosis CTDIW = 36,2 mGy bei durchschnittlich 174 mA. Der Studienarm Hals wurde vorzeitig wegen Zunahme von Aufhärtungsartefakten durch den Unterkiefer bzw. die Schulter abgebrochen. N2 - We searched for individual scan protocols which provide adequate diagnostic information with minimal radiation exposure in adult CT-examinations (cerebrum, neck, thorax and abdomen). In this prospective study 262 adults were examined using standard settings of each anatomical region. The individualised scan protocol was defined by repeating the reference scan with different tube current following a predefined iteration scheme. The examination was done with the lowest tube current which resulted a sufficient image quality. The image qualities with standard dose and with individual dose were evaluated independently by 3 different radiologists blinded to the exposition parameters. For the cerebrum (n=50) we found a dose reduction potential of 13 %, for the chest (n=67) of 57 % and for the abdomen a maximum reduction of up to 45 % compared with the standard settings without adverse affects on the diagnostic performance. The studies of the neck were untimely stopped due to artefacts caused in the mandible and the shoulder. The standard dose of the cerebrum (CTDIw = 41,7 mGy), of the thorax (CTDIw = 9,7 mGy) and of the abdomen (CTDIw = 11,7 mGy). We want to mention that our standard dose was in the lowest quartile of the actual German radiation dose survey. For abdominal examinations we found a linear relation between individualised dose and the anterior-posterior (a.p.) diameter of the patients. Patient diameters in a.p. direction varied from 16 to 35 cm and correlated with individualised tube currents from 110 to 325 mA (CTDIw = 6,4 - 17,6 mGy). Slim patients with a diameter lower than 27 cm in the epigastric area receive unnecessary high doses using the standard exposition parameters. For these patients you can estimate the necessary tube current multiplying the a.p. diameter with 3/4. For thoracal CT-examinations the dose reduction potential is independent on the physical diameter, on average a tube current of 73 mA (CTDIw = 4,2 mGy) is necessary. For examinations of the cerebrum there is the lowest dose reduction potential with a needed dose (CTDIw = 36,2 mGy) with an average value of 174 mA. KW - Dosisreduktion KW - Röhrenstromanpassung KW - Computertomographie KW - Strahlenexposition KW - Bildqualität KW - dose reduction KW - computed tomography KW - exposure of radiation KW - image quality KW - tube current modulation Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12273 ER - TY - JOUR A1 - Westermaier, Thomas A1 - Linsenmann, Thomas A1 - Homola, György A. A1 - Loehr, Mario A1 - Stetter, Christian A1 - Willner, Nadine A1 - Ernestus, Ralf-Ingo A1 - Soymosi, Laszlo A1 - Vince, Giles H. T1 - 3D rotational fluoroscopy for intraoperative clip control in patients with intracranial aneurysms – assessment of feasibility and image quality JF - BMC Medical Imaging N2 - Background Mobile 3D fluoroscopes have become increasingly available in neurosurgical operating rooms. In this series, the image quality and value of intraoperative 3D fluoroscopy with intravenous contrast agent for the evaluation of aneurysm occlusion and vessel patency after clip placement was assessed in patients who underwent surgery for intracranial aneurysms. Materials and methods Twelve patients were included in this retrospective analysis. Prior to surgery, a 360° rotational fluoroscopy scan was performed without contrast agent followed by another scan with 50 ml of intravenous iodine contrast agent. The image files of both scans were transferred to an Apple PowerMac® workstation, subtracted and reconstructed using OsiriX® free software. The procedure was repeated after clip placement. Both image sets were compared for assessment of aneurysm occlusion and vessel patency. Results Image acquisition and contrast administration caused no adverse effects. Image quality was sufficient to follow the patency of the vessels distal to the clip. Metal artifacts reduce the assessability of the immediate vicinity of the clip. Precise image subtraction and post-processing can reduce metal artifacts and make the clip-site assessable and depict larger neck-remnants. Conclusion This technique quickly supplies images at adequate quality to evaluate distal vessel patency after aneurysm clipping. Significant aneurysm remnants may be depicted as well. As it does not require visual control of all vessels that are supposed to be evaluated intraoperatively, this technique may be complementary to other intraoperative tools like indocyanine green videoangiography and micro-Doppler, especially for the assessment of larger aneurysms. At the momentary state of this technology, it cannot replace postoperative conventional angiography. However, 3D fluoroscopy and image post-processing are young technologies. Further technical developments are likely to result in improved image quality. KW - aneurysm surgery KW - clip control KW - angiography KW - 3D fluoroscopy KW - image quality KW - intraoperative KW - vessel patency KW - contrast KW - post-processing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146381 VL - 16 IS - 30 ER -