TY - JOUR A1 - Quast, Helmut A1 - Gescheidt, Georg A1 - Spichty, Martin T1 - Topological dynamics of a radical ion pair: Experimental and computational assessment at the relevant nanosecond timescale JF - Chemistry N2 - Chemical processes mostly happen in fluid environments where reaction partners encounter via diffusion. The bimolecular encounters take place at a nanosecond time scale. The chemical environment (e.g., solvent molecules, (counter)ions) has a decisive influence on the reactivity as it determines the contact time between two molecules and affects the energetics. For understanding reactivity at an atomic level and at the appropriate dynamic time scale, it is crucial to combine matching experimental and theoretical data. Here, we have utilized all-atom molecular-dynamics simulations for accessing the key time scale (nanoseconds) using a QM/MM-Hamiltonian. Ion pairs consisting of a radical ion and its counterion are ideal systems to assess the theoretical predictions because they reflect dynamics at an appropriate time scale when studied by temperature-dependent EPR spectroscopy. We have investigated a diketone radical anion with its tetra-ethylammonium counterion. We have established a funnel-like transition path connecting two (equivalent) complexation sites. The agreement between the molecular-dynamics simulation and the experimental data presents a new paradigm for ion–ion interactions. This study exemplarily demonstrates the impact of the molecular environment on the topological states of reaction intermediates and how these states can be consistently elucidated through the combination of theory and experiment. We anticipate that our findings will contribute to the prediction of bimolecular transformations in the condensed phase with relevance to chemical synthesis, polymers, and biological activity. KW - ion pairing KW - radical anion KW - kinetics KW - thermodynamics KW - molecular dynamics KW - QM/MM KW - EPR Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285195 SN - 2624-8549 VL - 2 IS - 2 SP - 219 EP - 230 ER - TY - JOUR A1 - Waelbroeck, M. A1 - Camus, J. A1 - Tastenoy, M. A1 - Lambrecht, G. A1 - Mutschler, E. A1 - Kropfgans, M. A1 - Sperlich, J. A1 - Wiesenberger, F. A1 - Tacke, R. A1 - Christophe, J. T1 - Thermodynamics of antagonist binding to rat muscarinic \(M_2\) receptors: antimuscarinics of the pridinol, sila-pridinol, diphenidol and sila-diphenidol type JF - British Journal of Pharmacology N2 - 1 We studied the effect of temperature on the binding to rat heart \(M_2\) muscarinic receptors of antagonists related to the carbon/silicon pairs pridinol/sila-pridinol and diphenidol/sila-diphenidol (including three germanium compounds) and six structurally related pairs of enantiomers [(R)- and (S)-procyclidine, (R)- and (S)-trihexyphenidyl, (R)- and (S)-tricyclamol, (R)- and (S)-trihexyphenidyl methiodide, (R)- and (S)-hexahydro-diphenidol and (R)- and (S)-hexbutinol]. Binding affinities were determined in competition experiments using \([^3H]\)-N-methyl-scopolamine chloride as radioligand. The reference drugs were scopolamine and N-methyl-scopolamine bromide. 2 The affinity of the antagonists either increased or decreased with temperature, van 't Hoff plots were linear in the 278–310°K temperature range. Binding of all antagonists was entropy driven. Enthalpy changes varied from large negative values (down to \(−29 kJ mol^{−1}\)) to large positive values (up to \(+ 30 kJ mol^{−1}\)). 3 (R)-configurated drugs had a 10 to 100 fold greater affinity for \(M_2\) receptors than the corresponding (S)-enantiomers. Enthalpy and entropy changes of the respective enantiomers were different but no consistent pattern was observed. 4 When silanols \((R_3SiOH)\) were compared to carbinols \((R_3COH)\), the affinity increase caused by C/Si exchange varied between 3 and 10 fold for achiral drugs but was negligible in the case of chiral drugs. Silanols induced more favourable enthalpy and less favourable entropy changes than the corresponding carbinols when binding. Organogermanium compounds \((R_4Ge)\) when compared to their silicon counterparts (R4Si) showed no significant difference in affinity as well as in enthalpy and entropy changes. 5 Exchange of a cyclohexyl by a phenyl moiety was associated with an increase or a decrease in drug affinity (depending on the absolute configuration in the case of chiral drugs) and generally also with a more favourable enthalpy change and a less favourable entropy change of drug binding. 6 Replacement of a pyrrolidino by a piperidino group and increasing the length of the alkylene chain bridging the amino group and the central carbon or silicon atom were associated with either an increase or a decrease of entropy and enthalpy changes of drug binding. However, there was no clear correlation between these structural variations and the thermodynamic effects. 7 Taken together, these results suggest that hydrogen bond-forming OH groups and, to a lesser extent, polarizable phenyl groups contribute significantly to the thermodynamics of interactions between these classes of muscarinic antagonists and \(M_2\) muscarinic receptors. KW - entropy KW - binding KW - M2 muscarinic receptors KW - thermodynamics KW - van 't Hoff plot KW - enthalpy Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128439 VL - 109 IS - 2 ER - TY - THES A1 - Werner, Vera T1 - Pharmaceutically relevant protein-protein interactions for controlled drug delivery T1 - Pharmazeutisch relevante Protein-Protein-Wechselwirkung für "Controlled drug delivery" N2 - Protein-protein interactions play a crucial role in the development of drug delivery devices for the increasingly important biologicals, including antibodies, growth factors and cytokines. The understanding thereof might offer opportunities for tailoring carriers or drug proteins specifically for this purpose and thereby allow controlled delivery to a chosen target. The possible applications range from trigger-dependent release to sustained drug delivery and possibly permanently present stimuli, depending on the anticipated mechanism. Silk fibroin (SF) is a biomaterial that is suitable as a carrier for protein drug delivery devices. It combines processability under mild conditions, good biocompatibility and stabilizing effects on incorporated proteins. As SF is naturally produced by spiders and silkworms, the understanding of this process and its major factors might offer a blueprint for formulation scientists, interested in working with this biopolymer. The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. Although we were able to show many examples for SF drug delivery applications and there are many publications about the loading of biologics to SF systems, the mechanism of interaction between both in solution was not yet extensively explored. This is why we made this the subject of our work, as it might allow for direct influence on pharmaceutical parameters, like aggregation and drug load. In order to understand the underlying mechanism for the interaction between SF and positively charged model proteins, we used isothermal titration calorimetry for thermodynamic characterization. This was supported by hydrophobicity analysis and by colloidal characterization methods including static light scattering, nanoparticle tracking analysis and zeta potential measurements. We studied the effects of three Hofmeister salts – NaCl (neutral), NaSCN (chaotropic) and Na2SO4 (cosmotropic) – and the pH on the interaction of SF with the model proteins in dependence of the ratio from one to another. The salts impacted the SF structure by stabilizing (cosmotropic) or destabilizing (chaotropic) the SF micelles, resulting in completely abolished (cosmotropic) or strongly enhanced (chaotropic) interaction. These effects were responsible for different levels of loading and coacervation when varying type of salt and its concentration. Additionally, NaCl and NaSCN were able to prolong the stability of aqueous SF solution during storage at 25°C in a preliminary study. Another approach to influence protein-protein interactions was followed by covalent modification. Interleukin-4 (IL-4) is a cytokine driving macrophages to M2 macrophages, which are known to provide anti-inflammatory effects. The possibility to regulate the polarization of macrophages to this state might be attractive for a variety of diseases, like atherosclerosis, in which macrophages are involved. As these cases demand a long-term treatment, this polarization was supposed to be maintained over time and we were planning to achieve this by keeping IL-4 permanently present in an immobilized way. In order to immobilize it, we genetically introduced an alkyne-carrying, artificial amino acid in the IL-4 sequence. This allowed access to a site-specific click reaction (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) with an azide partner. This study was able to set the basis for the project by successful expression and purification of the IL-4 analogue and by proving the availability for the click reaction and maintained bioactivity. The other side of this project was the isolation of human monocytes and the polarization and characterization of human macrophages. The challenge here was that the majority of related research was based on murine macrophages which was not applicable to human cells and the successful work was so far limited to establishing the necessary methods. In conclusion, we were able to show two different methods that allow the influence of protein-protein interactions and thereby the possible tailoring of drug loading. Although the results were very promising for both systems, their applicability in the development of drug delivery devices needs to be shown by further studies. N2 - Die Wechselwirkungen zwischen Proteinen spielen eine entscheidende Rolle in der Entwicklung von Freigabesystemen für die immer wichtiger werdenden Protein-Therapeutika, wie Antikörper, Wachstumsfaktoren und Zytokine. Das Verständnis dieser Mechanismen würde die Möglichkeit eröffnen, sowohl die Träger, als auch die zu verabreichenden Proteine so zu verändern und zu steuern, dass sie auf kontrollierte Weise an einem bestimmten Ort freigesetzt werden. Die Anwendungen hierfür reichen von Trigger gesteuerter Freisetzung, über verzögerte Freigabe bis zur permanenten Präsentation von Stimuli, abhängig davon was für die jeweilige Applikation gewünscht ist. Seidenfibroin (SF) ist ein Biomaterial, welches verschiedene positive Eigenschaften für die Anwendung als Trägermaterial in sich vereint, indem es unter sehr milden Bedingungen verarbeitet werden kann, gut biokompatibel ist und stabilisierend auf eingebettete Proteine wirken kann. Da SF in der Natur von Spinnen und Seidenraupen produziert wird, könnte das Verständnis dieses Prozesses, sowie seiner wichtigsten Faktoren eine Vorlage für die Formulierung dieses Biopolymers geben. Der natürliche Prozess des Seidenspinnens vereint eine faszinierende Vielfalt von Aggregatszuständen, die von kolloidalen Lösungen über Hydrogele bis hin zu festen System reichen. Die Übergänge zwischen diesen Zuständen sind in vivo sehr sorgfältig kontrolliert. Die Hauptfaktoren dieses Prozesses sind der pH-Wert während der Passage der Spinnlösung durch die Drüse, sowie die Art und Zusammensetzung der Ionen und die herrschenden Scherkräfte. Die Funktion dieser einzelnen Faktoren auf den Spinnprozess wurde recherchiert und wird beschrieben, bevor ihr Einfluss auf die Entwicklung und Herstellung von seidenbasierten Freigabesystemen untersucht wird. Es werden Beispiele vorgestellt, die die Kontrolle der Hydrogelbildung während der Lagerung untersuchen oder signifikante Parameter für die kontrollierte Präzipitation in Gegenwart bestimmter Salze zeigen. Der Review betrachtet den Einsatz von Seidenfibroin in der Entwicklung von flüssigen, halbfesten oder festen Freigabesystemen und legt besonderen Fokus auf die Kontrolle der SF Kristallisation, Partikelbildung und Interaktion mit dem Arzneistoff für steuerbare Beladung. Obwohl wir viele Beispiele für die Anwendung von SF in Freigabesystemen zeigen konnten und viele Publikationen die Beladung von Proteinen auf SF-Systeme behandeln, wurde der Mechanismus der Interaktion zwischen beiden bisher nicht detailliert untersucht. Es gibt wenige Studien die einige Aspekte abdecken, aber keines beschäftigte sich spezifisch mit dieser Fragestellung. Darum machen wir dies zum Gegenstand unserer Arbeit, da dies einen direkten Einfluss auf pharmazeutische Parameter, wie Aggregation und Beladung, erlauben würde. Um den zugrundeliegenden Mechanismus der Wechselwirkung zwischen SF und einem positiv geladenen Modellprotein zu verstehen, nutzten wir isotherme Titrationskalorimetrie für eine thermodynamische Charakterisierung. Diese wurde durch kolloidale Charakterisierungsmethoden wie Statische Lichtstreuung, nanoparticle tracking analysis und Zeta-potentialmessungen, sowie Hydrophobitätsbestimmungen unterstützt. Wir untersuchten die Effekte von drei verschiedenen Hofmeister Salzen - NaCl (neutral), NaSCN (chaotrop) und Na2SO4 (kosmotrop) – und des pH Wertes auf die Interaktion von SF mit dem Modellprotein in Abhängigkeit vom Verhältnis der beiden zueinander. Die Salze beeinflussten die SF Struktur, indem sie die SF Mizellen entweder stabilisierten (kosmotrop) oder destabilisierten (chaotrop) und dadurch die Interaktion entweder vollständig unterbanden (kosmotrop) oder verstärkten (chaotrop). Diese Effekte waren verantwortlich für verschiedene Level des Loadings und der Koazervation, wenn Salzart und –konzentration variiert wurden. Außerdem waren NaCl und NaSCN in der Lage die Stabilität einer wässrigen SF-Lösung während der Lagerung bei 25°C zu verlängern. Ein andere Ansatz um die Wechselwirkung zwischen Proteinen zu beinflussen wurde mit kovalenter Modifikation verfolgt. Interleukin-4 (IL-4) ist ein Zytokin und kann Makrophagen zu M2 Makrophagen polarisieren, welche dann anti-inflammatorische Wirkungen haben. Die Möglichkeit diese Polarisation zu regulieren wäre für verschiedene Krankheiten, wie Arteriosklerose, bei denen Makrophagen eine Rolle spielen interessant. Da in diesen Fällen eine Langzeitbehandlung von Nöten ist sollte die Polarisation über die Zeit erhalten bleiben. Wir planten dies durch die Immobilisation von IL-4 zu erreichen, die für eine permanente Präsenz sorgen würde. Um IL-4 zu immobilisieren haben wir eine künstliche Aminosäure in die Sequenz eingeführt, die eine Alkingruppe trägt. Diese ermöglicht den Zugang zu einer Kupfer vermittelten, spezifischen Click-Reaktion (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) mit einem Azid-Partner. Diese Studie war in der Lage die Basis für dieses Projekt zu erstellen, indem wir eine erfolgreiche Expression und Aufreinigung des IL-4 Analogons leisten konnten und dieses sowohl erhaltene Bioaktivität als auch Verfügbarkeit für die Clickreaktion zeigte. Die andere Seite dieses Projekts bestand aus der Isolation von humanen Monozyten und der Polarisation und Charakterisierung von humanen Makrophagen. Die Herausforderung hierbei lag darin dass die meiste Forschung auf diesem Gebiet an murinen Makrophagen durchgeführt wurde und dies nicht auf humane Zellen übertragbar war, und die erfolgreiche Arbeit bisher, beschränkte sich auf die Etablierung der nötigen Methoden. Zusammenfassend lässt sich sagen, dass wir in der Lage waren zwei verschiedene Methoden zur Beeinflussung der Protein-Protein Wechselwirkungen und damit der Beladung zu zeigen. Obwohl die Ergebnisse für beide Systeme vielversprechend waren muss ihre Anwendbarkeit in der Entwicklung von Freigabesystemen noch durch weitere Studien belegt werden. KW - Protein-Protein-Wechselwirkung KW - Makrophage KW - Seide KW - silk fibroin KW - drug delivery KW - click chemistry KW - interleukin-4 KW - thermodynamics KW - Wirkstofffreisetzung KW - Interleukin 4 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117409 ER - TY - JOUR A1 - Schulte, Clemens A1 - Soldà, Alice A1 - Spänig, Sebastian A1 - Adams, Nathan A1 - Bekić, Ivana A1 - Streicher, Werner A1 - Heider, Dominik A1 - Strasser, Ralf A1 - Maric, Hans Michael T1 - Multivalent binding kinetics resolved by fluorescence proximity sensing JF - Communications Biology N2 - Multivalent protein interactors are an attractive modality for probing protein function and exploring novel pharmaceutical strategies. The throughput and precision of state-of-the-art methodologies and workflows for the effective development of multivalent binders is currently limited by surface immobilization, fluorescent labelling and sample consumption. Using the gephyrin protein, the master regulator of the inhibitory synapse, as benchmark, we exemplify the application of Fluorescence proximity sensing (FPS) for the systematic kinetic and thermodynamic optimization of multivalent peptide architectures. High throughput synthesis of +100 peptides with varying combinatorial dimeric, tetrameric, and octameric architectures combined with direct FPS measurements resolved on-rates, off-rates, and dissociation constants with high accuracy and low sample consumption compared to three complementary technologies. The dataset and its machine learning-based analysis deciphered the relationship of specific architectural features and binding kinetics and thereby identified binders with unprecedented protein inhibition capacity; thus, highlighting the value of FPS for the rational engineering of multivalent inhibitors. KW - combinatorial libraries KW - kinetics KW - peptides KW - screening KW - thermodynamics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301157 VL - 5 ER - TY - JOUR A1 - Syamala, Pradeep P. N. A1 - Würthner, Frank T1 - Modulation of the Self‐Assembly of π‐Amphiphiles in Water from Enthalpy‐ to Entropy‐Driven by Enwrapping Substituents JF - Chemistry – A European Journal N2 - Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π‐cores of amphiphilic naphthalene and perylene bisimide dyes, self‐assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π‐cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π‐cores are strongly sequestered by the OEG chains. These molecules self‐assemble at elevated temperatures in an entropy‐driven process according to temperature‐ and concentration‐dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self‐assembly originates upon cooling in an enthalpy‐driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of “high energy water” from the hydrophobic π‐surfaces as well as dispersion interactions between the π‐scaffolds which drive the self‐assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen‐bonded water molecules from OEG units it is in particular the increase in conformational entropy of back‐folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self‐assembly of amphiphilic dyes in water from enthalpy‐ to entropy‐driven. KW - amphiphilic dyes KW - self-assembly KW - thermodynamics KW - OEG chains KW - π-conjugated systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218107 VL - 26 IS - 38 SP - 8426 EP - 8434 ER - TY - JOUR A1 - Grabarczyk, Daniel B. A1 - Berks, Ben C. T1 - Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ JF - PLoS ONE N2 - The Sox pathway found in many sulfur bacteria oxidizes thiosulfate to sulfate. Pathway intermediates are covalently bound to a cysteine residue in the carrier protein SoxYZ. We have used biochemical complementation by SoxYZ-conjugates to probe the identity of the intermediates in the Sox pathway. We find that unconjugated SoxYZ and SoxYZ-S-sulfonate are unlikely to be intermediates during normal turnover in disagreement with current models. By contrast, conjugates with multiple sulfane atoms are readily metabolised by the Sox pathway. The most parsimonious interpretation of these data is that the true carrier species in the Sox pathway is a SoxYZ-S-sulfane adduct. KW - thiosulfates KW - oxidation KW - sulfur KW - cysteine KW - sulfides KW - thermodynamics KW - sulfates KW - sulfites Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171147 VL - 12 IS - 3 ER - TY - JOUR A1 - Bauer, Wolfgang Rudolf T1 - Impact of Interparticle Interaction on Thermodynamics of Nano-Channel Transport of Two Species JF - Entropy N2 - Understanding the function and control of channel transport is of paramount importance for cell physiology and nanotechnology. In particular, if several species are involved, the mechanisms of selectivity, competition, cooperation, pumping, and its modulation need to be understood. What lacks is a rigorous mathematical approach within the framework of stochastic thermodynamics, which explains the impact of interparticle in-channel interactions on the transport properties of the respective species. To achieve this, stochastic channel transport of two species is considered in a model, which different from mean field approaches, explicitly conserves the spatial correlation of the species within the channel by analysis of the stochastic dynamics within a state space, the elements of which are the channel’s spatial occupation states. The interparticle interactions determine the stochastic transitions between these states. Local flow and entropy production in this state space reveal the respective particle flows through the channel and the intensity of the Brownian ratchet like rectifying forces, which these species exert mutually on each other, together with its thermodynamic effectiveness and costs. Perfect coupling of transport of the two species is realized by an attractive empty channel and strong repulsive forces between particles of the same species. This confines the state space to a subspace with circular topology, in which the concentration gradients as thermodynamic driving forces act in series, and channel flow of both species becomes equivalent. For opposing concentration gradients, this makes the species with the stronger gradient the driving, positive entropy producing one; the other is driven and produces negative entropy. Gradients equal in magnitude make all flows vanish, and thermodynamic equilibrium occurs. A differential interparticle interaction with less repulsive forces within particles of one species but maintenance of this interaction for the other species adds a bypass path to this circular subspace. On this path, which is not involved in coupling of the two species, a leak flow of the species with less repulsive interparticle interaction emerges, which is directed parallel to its concentration gradient and, hence, produces positive entropy here. Different from the situation with perfect coupling, appropriate strong opposing concentration gradients may simultaneously parallelize the flow of their respective species, which makes each species produce positive entropy. The rectifying potential of the species with the bypass option is diminished. This implies the existence of a gradient of the other species, above which its flow and gradient are parallel for any gradient of the less coupled species. The opposite holds for the less coupled species. Its flow may always be rectified and turned anti-parallel to its gradient by a sufficiently strong opposing gradient of the other one. KW - channel transport KW - entropy production KW - thermodynamics KW - non-equilibrium thermodynamics KW - statistical mechanics KW - free energy KW - state space KW - Brownian ratchet KW - interparticle interaction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203240 SN - 1099-4300 VL - 22 IS - 4 ER -