TY - JOUR A1 - Schäbler, Stefan A1 - Amatobi, Kelechi M. A1 - Horn, Melanie A1 - Rieger, Dirk A1 - Helfrich‑Förster, Charlotte A1 - Mueller, Martin J. A1 - Wegener, Christian A1 - Fekete, Agnes T1 - Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation JF - Cellular and Molecular Life Sciences N2 - The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period\(^{01}\) (per\(^{01}\)) clock mutants and Canton-S wildtype (WT\(_{CS}\)) flies in an isogenic and non-isogenic background using LC–MS. In the non-isogenic background, metabo-lites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per\(^{01}\) mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per\(^{01}\) mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per\(^{01}\) did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per\(^{01}\) mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants KW - circadian rhythms KW - metabolomics KW - mitochondrial activity KW - tryptophan KW - acylcarnitine KW - feeding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232432 SN - 1420-682X VL - 77 ER - TY - JOUR A1 - Weissenseel, Sebastian A1 - Gottscholl, Andreas A1 - Bönnighausen, Rebecca A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes JF - Science Advances N2 - Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs. KW - detected magnetic-resonance KW - population oscillations KW - polaron delocalization KW - charge separation KW - hole KW - phosphorescence KW - singlet KW - absorption KW - tryptophan KW - emission Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265508 VL - 7 IS - 47 ER - TY - JOUR A1 - Gutknecht, Lise A1 - Araragi, Naozumi A1 - Merker, Sören A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Mlinar, Boris A1 - Baccini, Gilda A1 - Mayer, Ute A1 - Proft, Florian A1 - Hamon, Michel A1 - Schmitt, Angelika G. A1 - Corradetti, Renato A1 - Lanfumey, Laurence A1 - Lesch, Klaus-Peter T1 - Impacts of Brain Serotonin Deficiency following Tph2 Inactivation on Development and Raphe Neuron Serotonergic Specification JF - PLoS One N2 - Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2-/-) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis. KW - lacking KW - knock-out mice KW - energy expenditure KW - locomotor activity KW - 5-HT transporter KW - anxiety like KW - receptors KW - behavior KW - tryptophan KW - nucleus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133728 VL - 7 IS - 8 ER - TY - JOUR A1 - van de Kerkhof, Nora WA A1 - Fekkes, Durk A1 - van der Heijden, Frank MMA A1 - Hoogendijk, Witte JG A1 - Stöber, Gerald A1 - Egger, Jos IM A1 - Verhoeven, Willem MA T1 - Cycloid psychoses in the psychosis spectrum: evidence for biochemical differences with schizophrenia JF - Neuropsychiatric Disease and Treatment N2 - Cycloid psychoses (CP) differ from schizophrenia regarding symptom profile, course, and prognosis and over many decades they were thought to be a separate entity within the psychosis spectrum. As to schizophrenia, research into the pathophysiology has focused on dopamine, brain-derived neurotrophic factor, and glutamate signaling in which, concerning the latter, the N-methyl-d-aspartate receptor plays a crucial role. The present study aims to determine whether CP can biochemically be delineated from schizophrenia. Eighty patients referred for psychotic disorders were assessed with the Comprehensive Assessment of Symptoms and History, and (both at inclusion and after 6 weeks of antipsychotic treatment) with the Positive and Negative Syndrome Scale and Clinical Global Impression. From 58 completers, 33 patients were diagnosed with schizophrenia and ten with CP according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, and Leonhard criteria, respectively. Fifteen patients were diagnosed with other disorders within the psychosis spectrum. At both time points, blood levels of the dopamine metabolite homovanillic acid, brain-derived neurotrophic factor, and amino acids related to glutamate neurotransmission were measured and compared with a matched control sample. Patients with CP showed a significantly better response to antipsychotic treatment as compared to patients with schizophrenia. In CP, glycine levels were elevated and tryptophan levels were lowered as compared to schizophrenia. Glutamate levels were increased in both patient groups as compared to controls. These results, showing marked differences in both treatment outcome and glutamate-related variable parameters, may point at better neuroplasticity in CP, necessitating demarcation of this subgroup within the psychosis spectrum. KW - cycloid psychoses KW - schizophrenia KW - glutamate KW - glycine KW - tryptophan KW - neuroplasticity Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166255 VL - 12 ER -