TY - JOUR A1 - Feldbauer, Katrin A1 - Schlegel, Jan A1 - Weissbecker, Juliane A1 - Sauer, Frank A1 - Wood, Phillip G. A1 - Bamberg, Ernst A1 - Terpitz, Ulrich T1 - Optochemokine Tandem for Light-Control of Intracellular Ca\(^{2+}\) JF - PLoS ONE N2 - An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light. KW - capacitance KW - endosomes KW - cell membranes KW - membrane proteins KW - intracellular membranes KW - vesicles KW - confocal laser microscopy KW - cytosol Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178921 VL - 11 IS - 10 ER - TY - JOUR A1 - Vaman V. S., Anjana A1 - Poppe, Heiko A1 - Houben, Roland A1 - Grunewald, Thomas G. P. A1 - Goebeler, Matthias A1 - Butt, Elke T1 - LASP1, a Newly Identified Melanocytic Protein with a Possible Role in Melanin Release, but Not in Melanoma Progression JF - PLoS One N2 - The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release. KW - cell membranes KW - vesicles KW - melanoma cells KW - melanomas KW - melanocytes KW - membrane proteins KW - melanin KW - cell staining Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125994 VL - 10 IS - 6 ER - TY - JOUR A1 - Brehm, Klaus A1 - Komguep Nono, Justin A1 - Lutz, Manfred B. T1 - EmTIP, a T-Cell Immunomodulatory Protein Secreted by the Tapeworm Echinococcus multilocularis Is Important N2 - Background Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colonization by E. multilocularis is dominated by a potentially parasitocidal Th1 immune response, the molecular basis of this response is unknown. Principal Findings We describe EmTIP, an E. multilocularis homologue of the human T-cell immunomodulatory protein, TIP. By immunohistochemistry we show EmTIP localization to the intercellular space within parasite larvae. Immunoprecipitation and Western blot experiments revealed the presence of EmTIP in the excretory/secretory (E/S) products of parasite primary cell cultures, representing the early developing metacestode, but not in those of mature metacestode vesicles. Using an in vitro T-cell stimulation assay, we found that primary cell E/S products promoted interferon (IFN)-γ release by murine CD4+ T-cells, whereas metacestode E/S products did not. IFN-γ release by T-cells exposed to parasite products was abrogated by an anti-EmTIP antibody. When recombinantly expressed, EmTIP promoted IFN-γ release by CD4+ T-cells in vitro. After incubation with anti-EmTIP antibody, primary cells showed an impaired ability to proliferate and to form metacestode vesicles in vitro. Conclusions We provide for the first time a possible explanation for the early Th1 response observed during E. multilocularis infections. Our data indicate that parasite primary cells release a T-cell immunomodulatory protein, EmTIP, capable of promoting IFN-γ release by CD4+ T-cells, which is probably driving or supporting the onset of the early Th1 response during AE. The impairment of primary cell proliferation and the inhibition of metacestode vesicle formation by anti-EmTIP antibodies suggest that this factor fulfills an important role in early E. multilocularis development within the intermediate host. KW - T Cells KW - primary cells KW - parasitic diseases KW - vesicles KW - larvae KW - immunoprecipitation KW - host-pathogen interactions KW - immune response Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111407 ER - TY - THES A1 - Solger, Franziska T1 - Central role of sphingolipids on the intracellular survival of \(Neisseria\) \(gonorrhoeae\) in epithelial cells T1 - Die zentrale Rolle von Sphingolipiden auf das intrazelluläre Überleben von \(Neisseria\) \(gonorrhoeae\) in Epithelzellen N2 - Neisseria gonorrhoeae are Gram-negative bacteria with diplococcal shape. As an obligate human pathogen, it is the causative agent of gonorrhoea, a sexually transmitted disease. Gonococci colonize a variety of mucosal tissues, mainly the urogenital tract in men and women. Occasionally N. gonorrhoeae invades the bloodstream, leading to disseminated gonococcal infection. These bacteria possess a repertoire of virulence factors, which expression patterns can be adapted to the environmental conditions of the host. Through the accumulation of antibiotic resistances and in absence of vaccines, some neisserial strains have the potential to spread globally and represent a major public health threat. Therefore, it is necessary to understand the exact molecular mechanisms underlying the successful infection and progression of gonococci within their host. This deeper understanding of neisserial infection and survival mechanisms is needed for the development of new therapeutic agents. In this work, the role of host-cell sphingolipids on the intracellular survival of N. gonorrhoeae was investigated. It was shown that different classes of sphingolipids strongly interact with invasive gonococci in epithelial cells. Therefore, novel and highly specific clickable sphingolipid analogues were applied to study these interactions with this pathogen. The formation of intra- and extracellular sphingosine vesicles, which were able to target gonococci, was observed. This direct interaction led to the uptake and incorporation of sphingosine into the neisserial membrane. Together with in vitro results, sphingosine was identified as a potential bactericidal reagent as part of the host cell defence. By using different classes of sphingolipids and their clickable analogues, essential structural features, which seem to trigger the bacterial uptake, were detected. Furthermore, effects of key enzymes of the sphingolipid signalling pathway were tested in a neutrophil infection model. In conclusion, the combination of click chemistry and infection biology made it possible to shed some light on the dynamic interplay between cellular sphingosine and N. gonorrhoeae. Thereby, a possible “catch-and-kill” mechanism could have been observed. N2 - Neisseria gonorrhoeae ist ein Gram-negatives Bakterium, welches als Diplokokke vorkommt. Als ein ausschließliches Humanpathogen sind Neisserien der Erreger für die sexuell übertragbare Infektionskrankheit Gonorrhö. Gonokokken besiedeln eine Vielzahl von Schleimhäuten, jedoch hauptsächlich den Urogenitaltrakt bei Männern und Frauen. Gelegentlich kann N. gonorrhoeae in die Blutbahn invadieren, was zu einer disseminierten Infektion führen kann. Diese Bakterien verfügen über ein Repertoire an Virulenzfaktoren, deren Expressionskombination den Umgebungsbedingungen des Wirts angepasst werden können. Durch die Anhäufung von Antibiotikaresistenzen und durch das Fehlen eines Impfstoffes, besteht die Gefahr, dass spezielle Neisserienstämme sich weltweit verbreiten und daher eine ernstzunehmende Bedrohung des Menschen sind. Daher ist es notwendig die zugrundeliegenden molekularen Mechanismen der erfolgreichen Infektion und Ausbreitung der Gonokokken im Wirt genauestens zu verstehen. Das detaillierte Wissen über die Neisserieninfektion und Überlebensmechanismen ist nötig für die Entwicklung neuer Therapieansätze. In dieser Arbeit wurde der Effekt von Sphingolipiden der Wirtszelle auf das intrazelluläre Überleben von N. gonorrhoeae untersucht. Es konnte gezeigt werden, dass unterschiedliche Klassen von Sphingolipiden stark mit invasiven Gonokokken in Epithelzellen interagieren. Um dies zu tun, wurden neue und hochspezifische clickbare Sphingolipidanaloge eingesetzt, um deren Interaktionen mit diesem Pathogen zu studieren. Die Formation von intra- als auch extrazellulären Sphingosinvesikeln, welche Gonokokken gezielt erreichten, konnte beobachtet werden. Diese direkte Interaktion führte zu einer Aufnahme und Einbau des Sphingosins in die Neisserienmembran. Zusammen mit in vitro Ergebnissen, konnte Sphingosin als potenzieller und antibakterieller Bestandteil des zellulären Abwehrsystems identifiziert werden. Weiterhin wurde durch die Verwendung unterschiedlicher Sphingolipidklassen und deren clickbaren Analoge wichtige Strukturen erkannt, die die bakterielle Aufnahme auslösen. Des Weiteren wurden die Auswirkungen von Schlüsselenzymen des Sphingolipidsignalwegs in einem Infektionsmodell mit Neutrophilen getestet. Abschließend ist zu sagen, dass die Kombination aus Click Chemie und Infektionsbiologie es ermöglicht hat, die dynamischen Wechselwirkungen zwischen zellulären Sphingosin und N. gonorrhoeae zu beleuchten. Dadurch konnte ein möglicher „catch-and-kill”-Mechanismus entdeckt werden. KW - Neisseria gonorrhoeae KW - Sphingosinkinase KW - Sphingosinanaloga KW - Click-Chemie KW - sphingosine KW - sphingolipids KW - Neisseria KW - intracellular KW - vesicles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247534 ER -