TY - THES A1 - Krause, Diana T1 - Transport der Hauptosmotika an der vakuolären Membran von Schließzellen T1 - Transport of the main osmotic substances on the vacuolar membrane of guard cells N2 - Im Rahmen der vorliegenden Arbeit wurden neue Einblicke bezüglich des Transport-prozesses vakuolärer Protonenpumpen, Zuckertransporter und des SV-Kanals von Arabidopsis thaliana gewonnen: 1. Mittels Patch-clamp-Technik wurden ATP- und Pyrophosphat-induzierte Pump-ströme an Mesophyllvakuolen des Wildtyps gemessen. Die durch ATP hervor-gerufenen Pumpströme konnten durch den spezifischen V-ATPase-Inhibitor Concanamycin A vollständig inhibiert werden. Messungen an der V-ATPase-Doppelmutante vha-a2-vha-a3 hingegen zeigten eine kaum vorhandene ATPase-Aktivität auf. Die vakuoläre Pyrophosphatase-Aktivität der vha-a2-vha-a3-Mutante war mit dem WT vergleichbar und konnte die verminderten Pumpströme der V-ATPase nicht kompensieren. Zudem wurde an A. thaliana WT-Pflanzen die Expressionsrate und Pumpstromdichte der V-ATPase von Schließzellen und Mesophyllzellen untersucht. Dabei konnte bei Schließzellen eine höhere Expressionsrate sowie Pumpleistung im Vergleich zu Mesophyllzellen detektiert werden, wodurch an der vakuolären Membran von Schließzellen eine starke protonenmotorische Kraft generiert werden kann. 2. Des Weiteren wurden die Transporteigenschaften des im Tonoplasten lokalisierten Transportproteins AtINT1 an Arabidopsis Mesophyllzellen des Wildtyps näher untersucht. Unter inversen pH-Wert-Bedingungen konnte AtINT1 als Symporter identifiziert werden, welcher myo-Inositol H+-gekoppelt aus der Vakuole in das Cytosol transportiert. 3. Überdies wurde eine elektrophysiologische Charakterisierung des AtSUC4-Transporters durchgeführt. Unter einem physiologischen Protonengradienten konnte bei WT- und Atsuc4.1-Vakuolen ausschließlich ein Saccharose/H+ ge-triebener Antiportmechanismus detektiert werden. Im Gegensatz dazu zeigten 60 % der AtSUC4-ÜE unter inversen pH-Gradienten während Saccharose-Applikation Ströme, die auf einen Saccharose/H+-Symportmechanismus hinweisen. Bei der Atsuc4.1-Verlustmutante hingegen konnten unter gleichen Lösungsbedingungen ausschließlich Ströme detektiert werden, die mit einem Saccharose/H+-gekoppelten Antiportmechanismus in Einklang zu bringen sind. Durch die Erkenntnisse der Arbeitsgruppe unter Norbert Sauer, Universität Erlangen, wird die Vermutung untermauert, dass AtSUC4 Saccharose im Symport mit H+ aus der Vakuole in das Cytosol transportiert und somit eine Rolle bei der Remobilisierung der in der Vakuole gespeicherten Saccharose übernimmt. 4. Darüber hinaus konnten Studien am nichtselektiven spannungsabhängigen „slow-vacuolar-channel“ (SV-Kanal) von Arabidopsis Mesophyllvakuolen durchgeführt werden. Dabei wurde das 14-3-3-Protein GRF6 als regulatorisches Protein identifiziert, welches die SV-Kanalaktivität stark verringert. Die gain-of-function Mutante fou2 mit der Punktmutation D454N im TPC1-Kanalprotein zeigt abweichende Kanaleigenschaften zum WT auf. Das Aktivie-rungspotential des fou2-SV-Kanals liegt bei 30 mV negativeren Membranspan-nungen, was die Offenwahrscheinlichkeit des SV-Kanals unter physiologischen Membranspannungen erhöht. Die fou2-Mutation beeinflusst außerdem die luminale Ca2+-Bindestelle des SV-Kanals, wodurch die Affinität bzgl. luminalem Ca2+ geringer ist und die fou2-SV-Kanalaktivität bei hohen luminalen Ca2+-Konzentrationen bestehen bleibt. Die absolute Offenwahrscheinlichkeit des WT-SV-Kanals nimmt mit Ansäuern des vakuolären Lumens im Gegensatz zum fou2-SV-Kanal stark ab, die Einzelkanalleitfähigkeit des WT- als auch des fou2-SV-Kanals dagegen zu. Anhand der durchgeführten Messungen konnte eine regulatorische, vakuolär gelegene Ca2+-Bindestelle des TPC1-kodierten Kanals lokalisiert und charakterisiert werden, welche sich vermutlich nahe am Spannungssensor befindet und unter physiologischen Membranspannungen einen einwärtsgerichteten Kationenstrom ermöglicht. 5. Ferner wurden SV-Kanäle von Schließzellen untersucht und deren spezifische Eigenschaften mit Mesophyll-SV-Kanälen verglichen. In Schließzellen liegt neben einer erhöhten Transkriptmenge des single-copy Gens TPC1 eine höhere Stromdichte des SV-Kanals vor. Unter einwärtsgerichtetem K+-Gradienten liegt das Aktivierungspotential von Schließzell-SV-Kanäle um 30 mV negativer als bei Mesophyllvakuolen, was unter physiologischen Membranspannungen zu einem ausgeprägtem K+-Einstrom führt. Darüber hinaus zeigte der Schließzell-SV-Kanal eine höhere Permeabilität von Na+- gegenüber K+-Ionen (1,3:1) auf. Während Schließzell- und Mesophyll-SV-Kanäle eine vergleichbare luminale Ca2+-Sensitivität aufweisen, zeigen Schließzell-SV-Kanäle eine höhere cytosoli-sche Ca2+- und vakuoläre pH-Sensitivität auf. Sequenzanalysen der TPC1-cDNA zeigten, dass die Zelltypspezifischen Unterschiede des SV-Kanals nicht durch posttranskriptionale Modifikation hervorgerufen werden. N2 - As an output of this dissertation, the following new insights into vacuolar transport pro-cesses of proton pumps, sugar transporters and slow vacuolar channels (SV-channels) via the patch clamp technique were gained: 1. The vacuolar V-ATPase of A. thaliana mesophyll cells of the WT as well as of the double mutant vha-a2-vha-a3 were analyzed. The specific V-ATPase-inhibitor concanamycin A inhibits the WT V-ATPase activity completely. In vha-a2-vha-a3 mutant the V-ATPase activity was completely absent and shows no ATP induced H+ currents. However, the vacuolar vha-a2-vha-a3 pyrophosphatase current density was indistinguishable from the WT and could not compensate the missing V-ATPase pump currents. Additionally, the V-ATPase expression rate and H+ currents of A. thaliana guard cells and mesophyll cells were examined. In guard cells the expression rate as well as the pump currents were higher compared to mesophyll cells which resulted in a stronger proton motive force. 2. Furthermore, the transport mechanism of the vacuolar membrane protein AtINT1 was studied on Arabidopsis WT mesophyll cells. At high vacuolar and low cytoplasmic pH values AtINT1 could be identified as an H+/inositol symporter. These data was confirmed by further measurements of the mutant lines Atint1.1 and Atint1.2. After application of myo-inositol the currents were completely absent in Atint1.1 and strongly reduced in the Atint1.2 mutant. 3. Besides transport characteristics of the tonoplast localized AtSUC4 protein was analyzed. After application of cytosolic sucrose, WT as well as Atsuc4.1 vacuoles showed an H+/sucrose driven Antiport mechanism in presence of physiological H+-gradient. However, in the presence of an inverse pH gradient, 60 % of the AtSUC4-overexpressing mutant showed sucrose induced currents indicating an H+/sucrose Symport mechanism of the AtSUC4 transport protein. Corresponding currents could not be detected in AtSUC4 less vacuoles (Atsuc4.1). In the inverse system sucrose induced currents of the Atsuc4.1 mutant were in accordance with an H+/sucrose coupled antiport mechanism. These patch clamp measurements confirm the findings of the working group of Norbert Sauer, University of Erlangen. AtSUC4 acts as a symporter by transporting sucrose coupled with H+ out of the vacuole into the cytosol and therefore plays a role in the remobilization of stored vacuolar sucrose. 4. Additionally the non-selective voltage dependent slow vacuolar channel (SV channel) of Arabidopsis mesophyll vacuoles was electrophysiologically characterized. Thereby the 14-3-3 protein GRF6 could be identified as a regulatory protein of the SV channel, which down-regulates the SV channel activity. The gain-of-function mutant fou2 containing the point mutation D454N on the vacuolar lumen side of the SV channel protein, shows different channel proper-ties compared to WT. The fou2 channel activation was shifted to 30 mV more negative membrane potentials which resulted in higher open probability than WT SV channels. The fou2 mutation also affected the luminal Ca2+ binding site of the SV channel and lowered the affinity to vacuolar Ca2+. fou2 channel activity remained high even at inhibitory vacuolar Ca2+ concentrations. The WT SV channel open probability decreased strongly with luminal acidification in contrast to fou2. However, the single channel conductance of WT and fou2 SV channels increased. The regulatory vacuolar Ca2+ binding site of the TPC1 channel seems to be located nearby the voltage sensor and enables a pronounced fou2 inward current under physiological membrane voltages. 5. The A. thaliana guard cell SV channel features were compared with mesophyll cells. In guard cells the transcript number of the single copy gene TPC1 was elevated which resulted in a higher SV current density than in mesophyll cells. When the K+ gradient was directed out of the vacuolar lumen the guard cell SV channel activated at about 30 mV less negative voltages compared to mesophyll cells and mediated distinct inward currents. The guard cell SV channel showed permeability for Na+ over K+ (1,3:1). SV channels from guard cells and mesophyll cells exhibited comparable luminal Ca2+ sensitivities. However, the guard cell SV channel is more sensitive to cytosolic Ca2+ and vacuolar pH. Sequence analyses of the TPC1 cDNA showed that the varying features of the guard cell and mesophyll cell SV channels are not related to posttranscriptional modifications. KW - Ackerschmalwand KW - Schließzelle KW - Vakuole KW - Saccharose KW - Inosite KW - Spannungskontrollierter Ionenkanal KW - Protonenpumpe KW - AtTPC1 KW - AtSUC4 KW - Protonenpumpe KW - Vakuole KW - Schließzelle KW - AtTPC1 KW - AtSUC4 KW - proton pump KW - vacuole KW - guard cell Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75043 ER - TY - THES A1 - Reuter-Weissenberger, Philipp T1 - The role of a fungal-specific transcription regulator on vacuolar biology and host interaction in \(Candida\) \(albicans\) T1 - Die Rolle eines pilzspezifischen Transkriptionsfaktors für die Vakuole und Wirtsinteraktion von \(Candida\) \(albicans\) N2 - Microorganisms that colonize the human body face large fluctuations in their surroundings. Therefore, those microbes developed sophisticated mechanisms that allow them to adapt their cell biology and maintain cellular homeostasis. One organelle vital to preserve cell physiology is the vacuole. The vacuole exhibits a wide range of functions and is able to adjust itself in response to both external and internal stimuli. Moreover, it plays an important role in host interaction and virulence in fungi such as Candida albicans. Despite this connection, only a few regulatory proteins have been described to modulate vacuolar biology in fungal pathogens. Furthermore, whether such regulation alters fungus-host interplay remains largely unknown. This thesis focuses on the characterization of ZCF8, a fungus-specific transcription regulator in the human-associated yeast C. albicans. To this end, I combined genome-wide protein-DNA interaction assays and gene expression analysis that identified genes regulated by Zcf8p. Fluorescence microscopy uncovered that several top targets of Zcf8p localize to the fungal vacuole. Moreover, deletion and overexpression of ZCF8 resulted in alterations in vacuolar morphology and in luminal pH and rendered the fungus resistant or susceptible to a vacuole-disturbing drug. Finally, in vitro adherence assays showed that Zcf8p modulates the attachment of C. albicans to human epithelial cells in a vacuole-dependent manner. Given those findings, I posit that the previously uncharacterized transcription regulator Zcf8p modulates fungal attachment to epithelial cells in a manner that depends on the status of the fungal vacuole. Furthermore, the results highlight that vacuolar physiology is a substantial factor influencing the physical interaction between Candida cells and mammalian mucosal surfaces. N2 - Mikroorganismen, die den Menschen besiedeln, sind großen Schwankungen in ihrer Umgebung ausgesetzt. Daher haben sie ausgeklügelte Mechanismen entwickelt, die es ihnen ermöglichen, ihre Zellbiologie anzupassen und die zelluläre Homöostase aufrechtzuerhalten. Eine für die Aufrechterhaltung der Zellphysiologie wichtige Organelle ist die Vakuole. Sie verfügt über ein breites Spektrum an Funktionen und ist in der Lage, auf externe und interne Stimuli zu reagieren. Außerdem spielt dieses Organell eine wichtige Rolle bei der Pilz-Wirt-Interaktion und somit für die Pathogenität von Pilzen wie Candida albicans. Trotz dieses Zusammenhangs wurden bisher nur wenige regulatorische Proteine beschrieben, welche die Biologie der Vakuolen in pathogenen Pilzen modulieren. Zudem ist weitgehend unbekannt, ob eine solche Regulierung das Zusammenspiel von Pilz und Wirt verändert. Diese Arbeit konzentriert sich auf die Charakterisierung von ZCF8, einem pilzspezifischen Transkriptionsregulator in der pathogenen Hefe C. albicans. Zu diesem Zweck wurden Protein-DNA-Interaktionstests und Genexpressionsanalysen kombiniert, um Gene zu identifizieren, die direkt von Zcf8p reguliert werden. Fluoreszenzmikroskopie zeigte zudem, dass mehrere der wichtigsten Ziele von Zcf8p in der Pilzvakuole lokalisiert sind. Darüber hinaus führte die Deletion und Überexpression von ZCF8 zu Veränderungen der Morphologie und des luminalen pH-Werts der Vakuole, und veränderte die Sensitivität des Pilzes gegenüber Stoffen, welche Funktionen der Vakuole beeinträchtigen. Schließlich deuteten In-vitro-Adhärenztests daraufhin, dass Zcf8p die Anheftung von C. albicans an menschliche Epithelzellen auf eine Weise moduliert, die abhängig von der Vakuole ist. Angesichts dieser Ergebnisse kann davon ausgegangen werden, dass der bisher unbekannte Transkriptionsregulator ZCF8 die Interaktion zwischen Pilz- und Epithelzellen des Wirts kontrolliert, und das auf eine Weise, die von der Pilzvakuole abhängig ist. Des Weiteren, unterstreichen die Ergebnisse, dass die Physiologie der Vakuole ein wesentlicher Faktor ist, welcher die Interaktion zwischen C. albicans und dem Wirt beeinflusst. KW - Vakuole KW - Transkriptionsfaktor KW - Candida albicans KW - vacuole KW - host colonization KW - Candida albicans KW - transcription regulator Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259287 ER - TY - THES A1 - Lu, Jinping T1 - The vacuolar TPC1 channel and its luminal calcium sensing site in the luminal pore entrance T1 - Der vakuoläre TPC1-Kanal und seine luminale Kalzium-Sensorstelle im luminalen Porenbereich N2 - The slowly activating vacuolar SV/TPC1 channel is ubiquitously expressed in plants and provides a large cation conductance in the vacuolar membrane. Thereby, monovalent (K+, Na+) and in principle also divalent cations, such as Ca2+, can pass through the channel. The SV/TPC1 channel is activated upon membrane depolarization and cytosolic Ca2+ but inhibited by luminal calcium. With respect to the latter, two luminal Ca2+ binding sites (site 1 Asp240/Asp454/Glu528, site 2 Glu239/Asp240/Glu457) were identified to coordinate luminal Ca2+. In this work, the characteristics of the SV/TPC1 channels in terms of regulation and function were further elucidated, focusing on the TPC1s of Arabidopsis thaliana and Vicia faba. For electrophysiological analysis of the role of distinct pore residues for channel gating and luminal Ca2+ sensing, TPC1 channel variants were generated by site-directed mutagenesis and transiently expressed as eGFP/eYFP-fusion constructs in Arabidopsis thaliana mesophyll protoplasts of the TPC1 loss-of-function mutant attpc1-2. 1. As visualized by confocal fluorescence laser-scanning microscopy, all AtTPC1 (WT, E605A/Q, D606N, D607N, E605A/D606N, E605Q/D606N/D607N, E457N/E605A/D606N) and VfTPC1 channel variants (WT, N458E/A607E/ N608D) were correctly targeted to the vacuole membrane. 2. Patch-clamp studies revealed that removal of one of the negative charges at position Glu605 or Asp606 was already sufficient to promote voltage-dependent channel activation with higher voltage sensitivity. The combined neutralization of these residues (E605A/D606N), however, was required to additionally reduce the luminal Ca2+ sensitivity of the AtTPC1 channel, leading to hyperactive AtTPC1 channels. Thus, the residues Glu605/Asp606 are functionally coupled with the voltage sensor of AtTPC1 channel, thereby modulating channel gating, and form a novel luminal Ca2+ sensing site 3 in AtTPC1 at the luminal entrance of the ion transport pathway. 3. Interestingly, this novel luminal Ca2+ sensing site 3 (Glu605/Asp606) and Glu457 from the luminal Ca2+ sensing site 2 of the luminal Ca2+-sensitive AtTPC1 channel were neutralized by either asparagine or alanine in the TPC1 channel from Vicia faba and many other Fabaceae. Moreover, the VfTPC1 was validated to be a hyperactive TPC1 channel with higher tolerance to luminal Ca2+ loads which was in contrast to the AtTPC1 channel features. As a result, VfTPC1 but not AtTPC1 conferred the hyperexcitability of vacuoles. When AtTPC1 was mutated for the three VfTPC1-homologous polymorphic site residues, the AtTPC1 triple mutant (E457N/E605A/D606N) gained VfTPC1-like characteristics. However, when VfTPC1 was mutated for the three AtTPC1-homologous polymorphic site residues, the VfTPC1 triple mutant (N458E/A607E/N608D) still sustained VfTPC1-WT-like features. These findings indicate that the hyperactivity of VfTPC1 is achieved in part by the loss of negatively charged amino acids at positions that - as part of the luminal Ca2+ sensing sites 2 and 3 – are homologous to AtTPC1-Glu457/Glu605/Asp606 and are likely stabilized by other unknown residues or domains. 4.The luminal polymorphic pore residues (Glu605/Asp606 in AtTPC1) apparently do not contribute to the unitary conductance of TPC1. Under symmetrical K+ conditions, a single channel conductance of about 80 pS was determined for AtTPC1 wild type and the AtTPC1 double mutant E605A/D606A. This is in line with the three-fold higher unitary conductance of VfTPC1 (232 pS), which harbors neutral luminal pore residues at the homologous sites to AtTPC1. In conclusion, by studying TPC1 channel from Arabidopsis thaliana and Vicia faba, the present thesis provides evidence that the natural TPC1 channel variants exhibit differences in voltage gating, luminal Ca2+ sensitivity and luminal Ca2+ binding sites. N2 - Der langsam aktivierende vakuoläre SV/TPC1-Kanal wird in Pflanzen ubiquitär exprimiert und besitzt eine große Kationenleitfähigkeit in der Vakuolen¬membran. Dabei können einwertige (K+, Na+) und im Prinzip auch zweiwertige Kationen, wie Ca2+, den Kanal passieren. Der SV/TPC1-Kanal wird bei Membrandepolarisation und zytosolischem Ca2+ aktiviert, aber durch luminales Calcium gehemmt. In Bezug auf letzteres wurden zwei luminale Ca2+-Bindungsstellen (Seite I Asp240/Asp454/Glu528, Seite II Glu239/Asp240/Glu457) zwecks Koordination von luminalem Ca2+ identifiziert. In dieser Arbeit wurden die Eigenschaften der SV/TPC1-Kanäle in Bezug auf Regulierung und Funktion weiter aufgeklärt, wobei der Schwerpunkt auf den TPC1-Proteinen von Arabidopsis thaliana und Vicia faba lag. Zur elektrophysiologischen Analyse der Rolle verschiedener Porenaminosäuren für das Kanal-Gating und die luminale Ca2+-Erkennung wurden TPC1-Kanalvarianten durch gezielte Mutagenese erzeugt und transient als eGFP/eYFP-Fusionskonstrukte in Mesophyll-Protoplasten der TPC1-Verlust¬mutante attpc1-2 von Arabidopsis thaliana exprimiert. 1. Mittels konfokaler Fluoreszenz-Laser-Scanning-Mikroskopie wurde anhand der eGFP- bzw. eYFP-Fluoreszenzsignale nachgewiesen, dass alle AtTPC1- (WT, E605A/Q, D606N, D607N, E605A/D606N, E605Q/D606N/D607N, E457N/E605A/D606N) und VfTPC1-Kanalvarianten (WT, N458E/A607E/ N608D) korrekt in die Vakuolenmembran eingebaut wurden. 2. Patch-Clamp-Studien zeigten, dass die Entfernung einer der negativen Ladungen an den Positionen Glu605 oder Asp606 bereits ausreichte, um die spannungsabhängige Kanalaktivierung mit höherer Spannungsempfindlichkeit zu fördern. Die kombinierte Neutralisierung dieser Reste (E605A/D606N) war jedoch erforderlich, um die luminale Ca2+-Empfindlichkeit des AtTPC1-Kanals zusätzlich zu reduzieren, was zu hyperaktiven AtTPC1-Kanälen führte. Die Aminosäurereste Glu605/Asp606 sind also funktionell mit dem Spannungssensor des AtTPC1-Kanals gekoppelt und modulieren dadurch das Kanaltor. Sie bilden eine neuartige luminale Ca2+-Sensorstelle 3 in AtTPC1 am luminalen Eingang des Ionentransportweges. 3. Interessanterweise waren diese Aminosäurereste Glu605/Asp606 der neuartigen luminalen Ca2+-Sensorstelle 3 und Glu457 von der luminalen Ca2+-Sensorstelle 2 des luminalen Ca2+-empfindlichen AtTPC1-Kanals im TPC1-Kanal von Vicia faba und vielen anderen Fabaceae entweder durch Asparagin oder Alanin neutralisiert. Darüber hinaus wurde der VfTPC1 als hyperaktiver TPC1-Kanal mit höherer Toleranz gegenüber luminalen Ca2+-Belastungen validiert, was im Gegensatz zu den Eigenschaften des AtTPC1-Kanals stand. Infolgedessen ist VfTPC1, nicht aber AtTPC1, für die hohe Erregbarkeit der Vakuolen verantwortlich. Wenn AtTPC1 für die drei VfTPC1-homologen polymorphen Stellen mutiert wurde, erhielt die AtTPC1-Dreifachmutante (E457N/E605A/D606N) VfTPC1-ähnliche Eigenschaften. Wenn VfTPC1 jedoch für die drei AtTPC1-homologen polymorphen Stellen mutiert wurde, behielt die VfTPC1-Dreifachmutante (N458E/A607E/N608D) weiterhin VfTPC1-WT-ähnliche Merkmale. Diese Ergebnisse deuten darauf hin, dass die Hyperaktivität von VfTPC1 zum Teil durch den Verlust von negativ geladenen Aminosäuren an Positionen erreicht wird, die - als Teil der luminalen Ca2+-Sensorstellen 2 und 3 - homolog zu AtTPC1-Glu457/Glu605/Asp606 sind und wahrscheinlich durch andere unbekannte Reste oder Domänen stabilisiert werden. 4. Die luminalen polymorphen Porenreste (Glu605/Asp606 in AtTPC1) beeinflussen offenbar nicht die Einzelkanaleitfähigkeit von TPC1. Unter symmetrischen K+-Bedingungen wurde für den AtTPC1-Wildtyp und die AtTPC1-Doppelmutante E605A/D606A eine Einzelkanalleitfähigkeit von etwa 80 pS ermittelt. Dies steht im Einklang mit der dreifach höheren Einzelkanalleitfähigkeit von VfTPC1 (232 pS), der an den homologen Stellen zu AtTPC1 neutrale luminale Porenreste aufweist. Durch die Untersuchung von TPC1-Kanälen aus Arabidopsis thaliana und Vicia faba konnte in der vorliegenden Arbeit nachgewiesen werden, dass diese natürlichen TPC1-Kanalvarianten Unterschiede im Spannungs-Gating, der luminalen Ca2+-Empfindlichkeit und den luminalen Ca2+-Bindungsstellen aufweisen. KW - Arabidopsis thaliana KW - Vicia faba KW - vacuole KW - SV/TPC1 KW - luminal Ca2+ sensing sites KW - luminale Ca2+-Sensorstellen Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251353 ER -