TY - JOUR A1 - Meyer, Neele A1 - Richter, S. Helene A1 - Schreiber, Rebecca S. A1 - Kloke, Vanessa A1 - Kaiser, Sylvia A1 - Lesch, Klaus-Peter A1 - Sachser, Norbert T1 - The Unexpected Effects of Beneficial and Adverse Social Experiences during Adolescence on Anxiety and Aggression and Their Modulation by Genotype JF - Frontiers in Behavioral Neuroscience N2 - Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior. KW - adolescence KW - aggressiveness KW - serotonin transporter KW - coping with challenge KW - adversity KW - anxiety-like behavior KW - social experience KW - 5-HTT knockout mice Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165090 VL - 10 IS - 97 ER - TY - JOUR A1 - Araragi, Naozumi A1 - Mlinar, Boris A1 - Baccini, Gilda A1 - Gutknecht, Lise A1 - Lesch, Klaus-Peter A1 - Corradetti, Renato T1 - Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis JF - Frontiers in Neuropharmacology N2 - Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling. KW - serotonin transporter KW - tryptophan hydroxylase-2 KW - knockout KW - dorsal raphe nucleus KW - autoinhibition KW - 5-HT1A receptor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97098 ER - TY - THES A1 - Jakob, Sissi T1 - Molecular mechanisms of early-life stress in 5-Htt deficient mice: Gene x environment interactions and epigenetic programming T1 - Molekulare Mechanismen von Entwicklungsstress bei 5-Htt defizienten Mäusen: Gen x Umwelt Interaktionen und epigenetische Programmierung N2 - Early-life stress has been shown to influence the development of the brain and to increase the risk for psychiatric disorders later in life. Furthermore, variation in the human serotonin transporter (5-HTT, SLC6A4) gene is suggested to exert a modulating effect on the association between early-life stress and the risk for depression. At the basis of these gene x environment (G x E) interactions, epigenetic mechanisms, such as DNA-methylation, seem to represent the primary biological processes mediating early-life programming for stress susceptibility or resilience, respectively. The exact molecular mechanisms however remain to be elucidated, though. In the present study, we used two different stress paradigms to assess the molecular mechanisms mediating the relationship between early-life stress and disorders of emotion regulation later in life. First, a 5-Htt x prenatal stress (PS) paradigm was applied to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition and anxiety- / depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL/6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt+/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression and DNA methylation profiling was performed using the Affymetrix GeneChip® Mouse Genome 430 2.0 Array and the AffymetrixGeneChip® Mouse Promoter 1.0R Array. Some of the resulting candidate genes were validated by quantitative real-time PCR. Further, the gene expression of these genes was measured in other brain regions of the PS animals as well as in the hippocampus of offspring of another, 5-Htt x perinatal stress (PeS) paradigm, in which pregnant and lactating females were stressed by an olfactory cue indicating infanticide. To assess resilience to PS and PeS, correlation studies between gene expression and behaviour were performed based on an initial performance-based LIMMA analysis of the gene expression microarray. 5-Htt+/- offspring of the PS paradigm showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt+/- mice to PS was associated with increased depression-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression and DNA methylation of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt+/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotype x PS manner, indicating a gene x environment interaction at the molecular level. The candidate genes of the expression array could be validated and their expression patterns were partly consistent in the prefrontal cortex and striatum. Furthermore, the genotype effect of XIAP associated factor 1 (Xaf1) was also detected in the mice of the PeS paradigm. Concerning resilience, we found that the expression of growth hormone (Gh), prolactin (Prl) and fos-induced growth factor (Figf) were downregulated in WTPS mice that performed well in the forced swim test (FST). At the same time, the results indicated that Gh and Prl expression correlated positively with adrenal weight, whereas Figf expression correlated positively with basal corticosteron concentration, indicating an intricate relationship between depression-like behavior, hippocampal gene expression and the hypothalamo-pituitary-adrenal (HPA) axis activity. Correlation studies in the PeS animals revealed a link between Gh / Prl expression and anxiety-like behavior. In conclusion, our data suggest that although the 5-Htt+/- genotype shows clear adaptive capacity, 5-Htt+/- mice, particularly females, appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression and DNA methylation profiles suggest that distinct epigenetic mechanisms at the molecular level mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction. Further, resilience to early-life stress might be conferred by genes whose expression is linked to HPA axis function. N2 - Zahlreiche Studien haben gezeigt, dass Stress während der Entwicklung die Gehirnentwicklung beinflusst und das Risiko an psychischen Störungen zu erkranken erhöht. Weiterhin wird vermutet, dass eine Variation im humanen Serotonintransportergen (5-HTT, SLC6A4) einen modulierenden Einfluss auf die Assoziation zwischen Entwicklungsstress und dem Risiko für Depression ausübt. Als Basis dieser Gene x Umwelt (GxE)-Interaktion scheinen epigenetische Mechanismen, wie DNA-Methylierung, die biologischen Prozesse darzustellen, die die Programmierung von Stressanfälligkeit oder Resilienz vermitteln. Die exakten molekularen Mechanismen sind jedoch noch unbekannt. In dieser Studie wurden zwei verschiedene Stressparadigma verwendet um die molekularen Mechanismen zu klären, die Stress während der Entwicklung und emotionalen Störungen später im Leben zu Grunde liegen. Zuerst wurde ein 5-Htt x pränatales Stress (PS)-Paradigma verwendet um zu untersuchen, ob die Effekte von pränatalem Stress abhängig von dem 5-Htt Genotypen sind. Aus diesem Grund wurden die Effekte von PS auf Kognition, Angst- und Depressions-ähnliches Verhalten untersucht indem ein “maternal restraint stress”-Paradigma in C57BL/6-Wildtyp (WT) und heterozygoten 5-Htt defizienten (5-Htt+/-) Mäusen angewandt wurde. Zusätzlich wurde mit Hilfe des Affymetrix GeneChip® Mouse Genome 430 2.0 Arrays und des AffymetrixGeneChip® Mouse Promoter 1.0R Arrays bei den weiblichen Nachkommen ein Genexpressions- und DNA-Methylierungsprofil erstellt. Einige der daraus resultierenden Kandidatengene wurden mit quantitativer real-time PCR (qRT-PCR) validiert. Weiterhin wurde die Genexpression von diesen Genen auch in anderen Gehirnregionen der PS-Mäuse und im Hippocampus von Nachkommen aus einem perinatalem (PeS) Paradigma gemessen. In dem PeS-Paradigma wurden schwangere und stillende Weibchen durch einen olfaktorischen Stimulus, der Infantizid anzeigt, gestresst und die Nachkommen (WT und 5-Htt+/-) untersucht. Um PS- und PeS-Resilienz zu messen wurden Korrelationsstudien durchgeführt. Zuvor wurde eine LIMMA-Analyse, die auf dem Verhalten von den Mäusen im Forced swim-Test (FST) beruht, gerechnet. Im Vergleich zu WT Nachkommen zeigten 5-Htt+/- Nachkommen des PS-Paradigmas verbesserte Gedächtnisleistung und Zeichen von reduzierter Angst. Im Gegensatz dazu war PS-Exposition von 5-Htt+/- Mäusen mit erhöhtem Depressions-ähnlichem Verhalten assoziiert, ein Effekt, der tendenziell eher in den weiblichen Nachkommen auffiel. Weiterhin beeinflussten der 5-Htt-Genotyp, PS und die Interaktion von beiden die Genexpression und DNA-Methylierung zahlreicher Gene und damit verbundene Signalwege im weiblichen Hippocampus. Der MAPK- und Neurotrophin-Signalweg wurden zum Beispiel durch den 5-Htt-Genotyp und PS-Exposition reguliert, wohingegen der Zytokin-und Wnt-Signalweg in einer 5-Htt x PS Art beeinflusst wurden, was Gen x Umwelt-Interaktionen auf der molekularen Ebene andeutet. Die Kandidatengene konnten zumeist validiert werden und waren zum Teil auch im präfrontalen Kortex sowie im Striatum differentiell exprimiert. Weiterhin konnte der Genotypeffekt von XIAP associated factor 1 (Xaf1) in den Mäusen des PeS-Paradigmas nachgewiesen werden. Bezüglich der Resilienz konnten wir eine Herunterregulierung der Expression des Wachstumshormons (Gh), Prolaktins (Prl) und des fos-induzierten Wachstumsfaktors (Figf) in den WTPS-Mäusen detektieren, die eine gute Leistung im FST gezeigt haben. Gleichzeitig korrelierten die Gh- und Prl-Expression positiv mit dem Gewicht der Nebennieren, wohingegen die Figf-Expression mit dem basalen Kortikosteron-Konzentration positiv korrelierte, was eine komplizierte Beziehung zwischen Depressions-ähnlichem Verhalten, hippocampaler Genexpression und der Hypothalamus-Hypophysen-Nebennieren (HPA)-Achsenaktivität andeutet. Korrelationsstudien über die PeS-Tiere deckten einen Link zwischen der Gh- und Prl-Expression und Angst-ähnlichem Verhalten auf. Schließlich lassen unsere Daten den Schluss zu, dass, auch wenn der 5-Htt-Genotyp eine klare adaptive Kapazität aufweist, die 5-Htt+/- Mäuse, insbesondere die Weibchen im Vergleich zu den WT-Mäusen eine erhöhte Vulnerabilität für Entwicklungsstress zu zeigen scheinen. Weiterhin könnten die hippocampale Genexpressions- und DNA-Methylierungsprofile darauf schließen lassen, dass epigenetische Mechanismen auf der molekularen Ebene die Verhaltenseffekte des 5-Htt Genotyps, PS-Exposition und ihrer Interaktion vermitteln. Darüber hinaus könnte Resilienz zu Entwicklungsstress durch Gene reguliert werden, die mit der HPA-Achsen-Funktion assoziiert sind. KW - Stressreaktion KW - Serotonin KW - Epigenetik KW - pränataler Stress KW - Serotonintransporter KW - Gen Umweltinteraktion KW - prenatal stress KW - serotonin transporter KW - gene environment interaction Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74150 ER - TY - THES A1 - Doenitz, Christian T1 - Adulte Neurogenese in alten Serotonin-Transporter defizienten Mäusen T1 - Adult neurogenesis in aged serotonin transporter deficient mice N2 - Das serotonerge System des Gehirns mit seinen Projektionen ins limbische System ist an der Pathogenese der Depression und anderer neuropsychiatrischer Erkrankungen beteiligt. Bei der serotonergen Neurotransmission spielt der Serotonintransporter (5-HTT) eine wichtige Rolle und ist auch therapeutischer Angriffspunkt verschiedener Antidepressiva. Das Tiermodell der 5-HTT-Knockout(KO)-Maus dient der Untersuchung des serotonergen Systems. Diese Tiere besitzen neben einem verstärkten Angst-ähnlichen Verhalten auch erhöhte 5-HT-Konzentrationen im synaptischen Spalt. Lange Zeit war man der Meinung, dass nahezu alle Nervenzellen während der Embryogenese bis kurz nach der Geburt gebildet werden. Neuere Untersuchungen konnten Neurogenese jedoch auch im Gehirn adulter Tiere und auch des Menschen nachweisen. Eine wichtige Gehirnregion mit adulter Neurogenese (aN) bis ins hohe Alter ist der Gyrus dentatus (GD) des Hippocampus. Der Hippocampus ist zentraler Teil des limbischen Systems und hat Schlüsselfunktionen bei Lernprozessen und der Gedächtnisbildung und unterliegt durch seine serotonerge Innervation auch dem Einfluss von 5-HT. Die Zusammenfassung dieser Beobachtungen führte zu folgender Arbeitshypothese: Eine erniedrigte Zahl von 5-HTT führt zu chronisch erhöhten 5-HT-Spiegeln im synaptischen Spalt. Die damit verbundene Stimulation des serotonergen Systems führt zu einer veränderten aN. Ziel der vorliegenden Arbeit war die quantitative Bestimmung von Proliferation, Überleben und Migration neu entstandener Zellen in der KZS des GD von heterozygoten (HET) und homozygoten 5-HTT-Mäusen (KO), die mit Wildtyptieren (WT) verglichen wurden. Dabei wurden ältere Mäusen mit einem Durchschnittsalter von 13,8 Monaten verwendet. In der Gruppe zur Untersuchung der Proliferation wurden die Versuchstiere (n=18) 24 h nach Injektionen mit BrdU getötet und histologische Schnitte des Hippocampus post mortem untersucht. In der Gruppe zur Untersuchung der Überlebensrate und Migration wurden die Mäuse (n=18) 4 Wochen nach den BrdU-Injektionen getötet. Im Proliferationsversuch wurde ein signifikanter Unterschied bei der Konzentration BrdU-markierter Zellkerne in der SGZ zwischen KO-Mäusen im Vergleich zu WT-Tieren gefunden, wobei HET-Mäuse ebenfalls eine signifikant höhere Konzentration BrdU-markierter Zellkerne in der SGZ gegenüber WT-Mäusen zeigten. In diesem Experiment ist somit ein positiver Einfluss des heterozygoten und homozygoten 5-HTT-KO auf die Entstehungsrate neuer Zellen im GD des Hippocampus im Vergleich zu den WT-Tieren feststellbar. Im Versuch zur Feststellung der Überlebensrate neu gebildeter Zellen im Hippocampus nach vier Wochen zeigten KO-Mäuse gegenüber WT- und HET-Mäusen keine signifikant höhere Zahl BrdU-markierter Zellkerne. Auch bei der Untersuchung der Migration war beinahe die Hälfte der BrdU-markierten Zellen von der SGZ in die KZS eingewandert. Ein signifikanter Unterschied zwischen den verschiedenen 5-HTT-Genotypen zeigte sich nicht. Offenbar hat der heterozygote oder homozygote 5-HTT-KO keinen Einfluss auf die Überlebensrate und das Migrationsverhalten neu entstandener Zellen. Bei den in dieser Arbeit durchgeführten Untersuchungen zur aN in 5-HTT-KO-Mäusen konnte weder bei der Gruppe zur Untersuchung der Proliferation von neuronalen Vorläuferzellen noch bei der Untersuchung der Überlebensrate oder Migration eine Abhängigkeit der ermittelten Konzentration BrdU-positiver Zellen vom Geschlecht oder Alter gefunden werden. Es zeigte sich jedoch eine signifikante negative Korrelation zwischen dem Gewicht der Tiere und dem Anteil gewanderter Zellen im Migrationsversuch, d.h. leichtere Tiere hatten tendenziell einen höheren Anteil von in die KZS eingewanderten Zellen. Zusammengefasst zeigt die vorliegende Arbeit zum einen, dass ältere KO- oder HET-Mäuse im Vergleich zu WT-Tieren eine erhöhte Proliferationsrate von neuronalen Vorläuferzellen aufweisen. Zum anderen konnte ein indirekter Zusammenhang zwischen dem Gewicht der Versuchstiere und der Anzahl von in die KZS eingewanderten Zellen nachgewiesen werden. Bei einer Vergleichsuntersuchung in unserem Hause mit zwei Gruppen jüngerer adulter 5-HTT-KO Mäuse mit einem Durchschnittalter von 7 Wochen und 3 Monaten konnte die Beobachtung einer erhöhten Proliferation nicht gemacht werden. Wir gehen deshalb davon aus, dass in diesem 5-HTT-KO Modell nur in höherem Alter eine veränderte 5-HT-Homöostase zu einer verstärkten Proliferation von neuronalen Vorläuferzellen führt. N2 - Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and adult neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study, we investigated the effects of elevated 5-HT levels on adult neurogenesis in the hippocampus of aged 5-HTT deficient mice, including stem cell proliferation, survival, and differentiation. Using an in vivo approach, we showed an increase in proliferative capacity of hippocampal adult neural stem cells in aged 5-HTT knockout mice (~13,8 months) compared to wildtype controls. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of aged 5-HTT deficient mice does influence stem cell proliferation in the dentate gyrus of the hippocampus. KW - Neurogenese KW - adulte Neurogenese KW - Depression KW - Serotonin-Transporter KW - Hippocampus KW - Knockout KW - adult neurogenesis KW - hippocampus KW - depression KW - serotonin transporter KW - knockout Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49745 ER -