TY - JOUR A1 - Zhang, Xin A1 - Wu, Wei A1 - Li, Gang A1 - Wen, Lin A1 - Sun, Qing A1 - Ji, An-Chun T1 - Phase diagram of interacting Fermi gas in spin-orbit coupled square lattices JF - New Journal of Physics N2 - The spin-orbit (SO) coupled optical lattices have attracted considerable interest. In this paper, we investigate the phase diagram of the interacting Fermi gas with Rashba-type spin-orbit coupling (SOC) on a square optical lattice. The phase diagram is investigated in a wide range of atomic interactions and SOC strength within the framework of the cluster dynamical mean-field theory (CDMFT). We show that the interplay between the atomic interactions and SOC results in a rich phase diagram. In the deep Mott insulator regime, the SOC can induce diverse spin ordered phases. Whereas near the metal-insulator transition (MIT), the SOC tends to destroy the conventional antiferromagnetic fluctuations, giving rise to distinctive features of the MIT. Furthermore, the strong fluctuations arising from SOC may destroy the magnetic orders and trigger an order to disorder transition in close proximity of the MIT. KW - ultracold KW - hubbard-model KW - physics transition KW - metal-insulator transition KW - cluster dynamical mean-field theory KW - atomic gases KW - mean-field theory KW - mott insulator KW - optical lattice KW - weak ferromagnetism KW - quantum gases KW - superfluid KW - spin-orbit coupling Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151475 VL - 17 IS - 073036 ER - TY - JOUR A1 - Hansmann, P. A1 - Parragh, N. A1 - Toschi, A. A1 - Sangiovanni, G. A1 - Held, K. T1 - Importance of d-p Coulomb interaction for high T-C cuprates and other oxides JF - New Journal of Physics N2 - Current theoretical studies of electronic correlations in transition metal oxides typically only account for the local repulsion between d-electrons even if oxygen ligand p-states are an explicit part of the effective Hamiltonian. Interatomic interactions such as U-pd between d- and (ligand) p-electrons, as well as the local interaction between p-electrons, are neglected. Often, the relative d-p orbital splitting has to be adjusted 'ad hoc' on the basis of the experimental evidence. By applying the merger of local density approximation and dynamical mean field theory to the prototypical case of the three-band Emery dp model for the cuprates, we demonstrate that, without any 'ad hoc' adjustment of the orbital splitting, the charge transfer insulating state is stabilized by the interatomic interaction U-pd. Our study hence shows how to improve realistic material calculations that explicitly include the p-orbitals. KW - correlated electrons KW - dynamical mean field theory KW - transition metal oxides KW - fermions KW - superconductivity KW - energy bands KW - transition metals KW - correlated systems KW - mean-field theory KW - electronic-structure calculations KW - inplane spectral weight KW - Hubbard model KW - infinite dimensions Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117165 SN - 1367-2630 VL - 16 IS - 33009 ER -