TY - JOUR A1 - Rothe, Hansjörg A1 - Brandenburg, Vincent A1 - Haun, Margot A1 - Kollerits, Barbara A1 - Kronenberg, Florian A1 - Ketteler, Markus A1 - Wanner, Christoph T1 - Ecto-5 ' -Nucleotidase CD73 (NT5E), vitamin D receptor and FGF23 gene polymorphisms may play a role in the development of calcific uremic arteriolopathy in dialysis patients - Data from the German Calciphylaxis Registry JF - PLoS One N2 - Introduction: Calciphylaxis/calcific uremic arteriolopathy affects mainly end-stage kidney disease patients but is also associated with malignant disorders such as myeloma, melanoma and breast cancer. Genetic risk factors of calciphylaxis have never been studied before. Methods: We investigated 10 target genes using a tagging SNP approach: the genes encoding CD73/ ecto-5'-nucleotidase (purinergic pathway), Matrix Gla protein, Fetuin A, Bone Gla protein, VKORC1 (all related to intrinsic calcification inhibition), calcium-sensing receptor, FGF23, Klotho, vitamin D receptor, stanniocalcin 1 (all related to CKD-MBD). 144 dialysis patients from the German calciphylaxis registry were compared with 370 dialysis patients without history of CUA. Genotyping was performed using iPLEX Gold MassARRAY(Sequenom, San Diego, USA), KASP genotyping chemistry (LGC, Teddington, Middlesex, UK) or sequencing. Statistical analysis comprised logistic regression analysis with adjustment for age and sex. Results: 165 SNPs were finally analyzed and 6 SNPs were associated with higher probability for calciphylaxis (OR>1) in our cohort. Nine SNPs of three genes (CD73, FGF23 and Vitamin D receptor) reached nominal significance (p< 0.05), but did not reach statistical significance after correction for multiple testing. Of the CD73 gene, rs4431401 (OR = 1.71, 95%CI 1.08-2.17, p = 0.023) and rs9444348 (OR = 1.48, 95% CI 1.11-1.97, p = 0.008) were associated with a higher probability for CUA. Of the FGF23 and VDR genes, rs7310492, rs11063118, rs13312747 and rs17882106 were associated with a higher probability for CUA. Conclusion: Polymorphisms in the genes encoding CD73, vitamin D receptor and FGF23 may play a role in calciphylaxis development. Although our study is the largest genetic study on calciphylaxis, it is limited by the low sample sizes. It therefore requires replication in other cohorts if available. KW - single nucleotide polymorphisms KW - calcification KW - medical dialysis KW - genotyping KW - cancer risk factors KW - vitamin D KW - chronic kidney disease KW - melanoma Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171817 VL - 12 IS - 2 ER - TY - JOUR A1 - Grassmann, Felix A1 - Fritsche, Lars G. A1 - Keilhauer, Claudia N. A1 - Heid, Iris M. A1 - Weber, Bernhard H. F. T1 - Modelling the Genetic Risk in Age-Related Macular Degeneration JF - PLoS One N2 - Late-stage age-related macular degeneration (AMD) is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS) for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC) of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69-2.05) than patients aged 75 and above (1.45, 95% CI: 1.36-1.54). Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11-1131.96) for individuals in the highest category (GRS 3.44-5.18, 0.5% of the general population) compared to subjects with the most common genetic background (GRS -0.05-1.70, 40.2% of general population). The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available. KW - AMD KW - complement factor-H KW - grading system KW - United States KW - vitamin C KW - prevalence KW - variants KW - susceptibility KW - association KW - maculopathy KW - variant genotypes KW - genetic loci KW - macular degeneration KW - genetics of disease KW - eyes KW - cased-control studies KW - genotyping KW - human genetics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131315 VL - 7 IS - 5 ER -