TY - JOUR A1 - Wang, Chenglong A1 - Stöckl, Sabine A1 - Li, Shushan A1 - Herrmann, Marietta A1 - Lukas, Christoph A1 - Reinders, Yvonne A1 - Sickmann, Albert A1 - Grässel, Susanne T1 - Effects of extracellular vesicles from osteogenic differentiated human BMSCs on osteogenic and adipogenic differentiation capacity of naïve human BMSCs JF - Cells N2 - Osteoporosis, or steroid-induced osteonecrosis of the hip, is accompanied by increased bone marrow adipogenesis. Such a disorder of adipogenic/osteogenic differentiation, affecting bone-marrow-derived mesenchymal stem cells (BMSCs), contributes to bone loss during aging. Here, we investigated the effects of extracellular vesicles (EVs) isolated from human (h)BMSCs during different stages of osteogenic differentiation on the osteogenic and adipogenic differentiation capacity of naïve (undifferentiated) hBMSCs. We observed that all EV groups increased viability and proliferation capacity and suppressed the apoptosis of naïve hBMSCs. In particular, EVs derived from hBMSCs at late-stage osteogenic differentiation promoted the osteogenic potential of naïve hBMSCs more effectively than EVs derived from naïve hBMSCs (naïve EVs), as indicated by the increased gene expression of COL1A1 and OPN. In contrast, the adipogenic differentiation capacity of naïve hBMSCs was inhibited by treatment with EVs from osteogenic differentiated hBMSCs. Proteomic analysis revealed that osteogenic EVs and naïve EVs contained distinct protein profiles, with pro-osteogenic and anti-adipogenic proteins encapsulated in osteogenic EVs. We speculate that osteogenic EVs could serve as an intercellular communication system between bone- and bone-marrow adipose tissue, for transporting osteogenic factors and thus favoring pro-osteogenic processes. Our data may support the theory of an endocrine circuit with the skeleton functioning as a ductless gland. KW - extracellular vesicles KW - mesenchymal stem cells KW - osteogenic potential KW - osteogenic differentiation KW - adipogenic differentiation KW - ECM remodeling KW - bone regeneration Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286112 SN - 2073-4409 VL - 11 IS - 16 ER - TY - JOUR A1 - Samper Agrelo, Iria A1 - Schira-Heinen, Jessica A1 - Beyer, Felix A1 - Groh, Janos A1 - Bütermann, Christine A1 - Estrada, Veronica A1 - Poschmann, Gereon A1 - Bribian, Ana A1 - Jadasz, Janusz J. A1 - Lopez-Mascaraque, Laura A1 - Kremer, David A1 - Martini, Rudolf A1 - Müller, Hans Werner A1 - Hartung, Hans Peter A1 - Adjaye, James A1 - Stühler, Kai A1 - Küry, Patrick T1 - Secretome analysis of mesenchymal stem cell factors fostering oligodendroglial differentiation of neural stem cells in vivo JF - International Journal of Molecular Sciences N2 - Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach. KW - neural stem cells KW - mesenchymal stem cells KW - transplantation KW - oligodendroglia KW - glial fate modulation KW - myelin KW - spinal cord KW - secretome KW - TIMP-1 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285465 SN - 1422-0067 VL - 21 IS - 12 ER - TY - JOUR A1 - Niedermair, Tanja A1 - Lukas, Christoph A1 - Li, Shushan A1 - Stöckl, Sabine A1 - Craiovan, Benjamin A1 - Brochhausen, Christoph A1 - Federlin, Marianne A1 - Herrmann, Marietta A1 - Grässel, Susanne T1 - Influence of Extracellular Vesicles Isolated From Osteoblasts of Patients With Cox-Arthrosis and/or Osteoporosis on Metabolism and Osteogenic Differentiation of BMSCs JF - Frontiers in Bioengineering and Biotechnology N2 - Background: Studies with extracellular vesicles (EVs), including exosomes, isolated from mesenchymal stem cells (MSC) indicate benefits for the treatment of musculoskeletal pathologies as osteoarthritis (OA) and osteoporosis (OP). However, little is known about intercellular effects of EVs derived from pathologically altered cells that might influence the outcome by counteracting effects from “healthy” MSC derived EVs. We hypothesize, that EVs isolated from osteoblasts of patients with hip OA (coxarthrosis/CA), osteoporosis (OP), or a combination of both (CA/OP) might negatively affect metabolism and osteogenic differentiation of bone-marrow derived (B)MSCs. Methods: Osteoblasts, isolated from bone explants of CA, OP, and CA/OP patients, were compared regarding growth, viability, and osteogenic differentiation capacity. Structural features of bone explants were analyzed via μCT. EVs were isolated from supernatant of naïve BMSCs and CA, OP, and CA/OP osteoblasts (osteogenic culture for 35 days). BMSC cultures were stimulated with EVs and subsequently, cell metabolism, osteogenic marker gene expression, and osteogenic differentiation were analyzed. Results: Trabecular bone structure was different between the three groups with lowest number and highest separation in the CA/OP group. Viability and Alizarin red staining increased over culture time in CA/OP osteoblasts whereas growth of osteoblasts was comparable. Alizarin red staining was by trend higher in CA compared to OP osteoblasts after 35 days and ALP activity was higher after 28 and 35 days. Stimulation of BMSC cultures with CA, OP, and CA/OP EVs did not affect proliferation but increased caspase 3/7-activity compared to unstimulated BMSCs. BMSC viability was reduced after stimulation with CA and CA/OP EVs compared to unstimulated BMSCs or stimulation with OP EVs. ALP gene expression and activity were reduced in BMSCs after stimulation with CA, OP, and CA/OP EVs. Stimulation of BMSCs with CA EVs reduced Alizarin Red staining by trend. Conclusion: Stimulation of BMSCs with EVs isolated from CA, OP, and CA/OP osteoblasts had mostly catabolic effects on cell metabolism and osteogenic differentiation irrespective of donor pathology and reflect the impact of tissue microenvironment on cell metabolism. These catabolic effects are important for understanding differences in effects of EVs on target tissues/cells when harnessing them as therapeutic drugs. KW - extracellular vesicles KW - mesenchymal stem cells KW - osteoblasts KW - osteoarthritis KW - osteoporosis KW - EVs KW - osteogenic differentiation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219902 SN - 2296-4185 VL - 8 ER - TY - JOUR A1 - I, Takashi A1 - Ueda, Yuichiro A1 - Wörsdörfer, Philipp A1 - Sumita, Yoshinori A1 - Asahina, Izumi A1 - Ergün, Süleyman T1 - Resident CD34-positive cells contribute to peri-endothelial cells and vascular morphogenesis in salivary gland after irradiation JF - Journal of Neural Transmission N2 - Salivary gland (SG) hypofunction is a common post-radiotherapy complication. Besides the parenchymal damage after irradiation (IR), there are also effects on mesenchymal stem cells (MSCs) which were shown to contribute to regeneration and repair of damaged tissues by differentiating into stromal cell types or releasing vesicles and soluble factors supporting the healing processes. However, there are no adequate reports about their roles during SG damage and regeneration so far. Using an irradiated SG mouse model, we performed certain immunostainings on tissue sections of submandibular glands at different time points after IR. Immunostaining for CD31 revealed that already one day after IR, vascular impairment was induced at the level of capillaries. In addition, the expression of CD44—a marker of acinar cells—diminished gradually after IR and, by 20 weeks, almost disappeared. In contrast, the number of CD34-positive cells significantly increased 4 weeks after IR and some of the CD34-positive cells were found to reside within the adventitia of arteries and veins. Laser confocal microscopic analyses revealed an accumulation of CD34-positive cells within the area of damaged capillaries where they were in close contact to the CD31-positive endothelial cells. At 4 weeks after IR, a fraction of the CD34-positive cells underwent differentiation into α-SMA-positive cells, which suggests that they may contribute to regeneration of smooth muscle cells and/or pericytes covering the small vessels from the outside. In conclusion, SG-resident CD34-positive cells represent a population of progenitors that could contribute to new vessel formation and/or remodeling of the pre-existing vessels after IR and thus, might be an important player during SG tissue healing. KW - salivary gland KW - xerostomia KW - radiation KW - resident CD34-positive cells KW - mesenchymal stem cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235613 SN - 0300-9564 VL - 127 ER - TY - JOUR A1 - Scherzad, Agmal A1 - Meyer, Till A1 - Ickrath, Pascal A1 - Gehrke, Thomas Eckhart A1 - Bregenzer, Maximillian A1 - Hagen, Rudolf A1 - Dembski, Sofia A1 - Hackenberg, Stephan T1 - Cultivation of hMSCs in human plasma prevents the cytotoxic and genotoxic potential of ZnO-NP in vitro JF - Applied Sciences N2 - Zinc oxide nanoparticles (ZnO-NPs) are commonly used for industrial applications. Consequently, there is increasing exposure of humans to them. The in vitro analysis of cytotoxicity and genotoxicity is commonly performed under standard cell culture conditions. Thus, the question arises of how the results of genotoxicity and cytotoxicity experiments would alter if human plasma was used instead of cell culture medium containing of fetal calf serum (FCS). Human mesenchymal stem cells (hMSCs) were cultured in human plasma and exposed to ZnO-NPs. A cultivation in expansion medium made of DMEM consisting 10% FCS (DMEM-EM) served as control. Genotoxic and cytotoxic effects were evaluated with the comet and MTT assay, respectively. hMSC differentiation capacity and ZnO-NP disposition were evaluated by histology and transmission electron microscopy (TEM). The protein concentration and the amount of soluble Zn2+ were measured. The cultivation of hMSCs in plasma leads to an attenuation of genotoxic and cytotoxic effects of ZnO-NPs compared to control. The differentiation capacity of hMSCs was not altered. The TEM showed ZnO-NP persistence in cytoplasm in both groups. The concentrations of protein and Zn2+ were higher in plasma than in DMEM-EM. In conclusion, the cultivation of hMSCs in plasma compared to DMEM-EM leads to an attenuation of cytotoxicity and genotoxicity in vitro. KW - ZnO-NP KW - mesenchymal stem cells KW - genotoxicity KW - cytotoxicity KW - human plasma Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193063 SN - 2076-3417 VL - 9 IS - 23 ER - TY - JOUR A1 - Ebert, Regina A1 - Benisch, Peggy A1 - Krug, Melanie A1 - Zeck, Sabine A1 - Meißner-Weigl, Jutta A1 - Steinert, Andre A1 - Rauner, Martina A1 - Hofbauer, Lorenz A1 - Jakob, Franz T1 - Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells JF - Stem Cell Research N2 - The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation andmineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1\(\beta\), CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis. KW - human atherosclerotic lesions KW - senescence KW - expression KW - toll-like receptor KW - mineralization KW - osteogenic differentiation KW - serum amyloid A KW - inflammation KW - mesenchymal stem cells KW - WNT5A KW - model KW - lines KW - stromal cells KW - RT-PCR Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148491 VL - 15 ER - TY - JOUR A1 - Schatton, Tobias A1 - Yang, Jun A1 - Kleffel, Sonja A1 - Uehara, Mayuko A1 - Barthel, Steven R. A1 - Schlapbach, Christoph A1 - Zhan, Qian A1 - Dudeney, Stephen A1 - Mueller, Hansgeorg A1 - Lee, Nayoung A1 - de Vries, Juliane C. A1 - Meier, Barbara A1 - Beken, Seppe Vander A1 - Kluth, Mark A. A1 - Ganss, Christoph A1 - Sharpe, Arlene H. A1 - Waaga-Gasser, Ana Maria A1 - Sayegh, Mohamed H. A1 - Abdi, Reza A1 - Scharffetter-Kochanek, Karin A1 - Murphy, George F. A1 - Kupper, Thomas S. A1 - Frank, Natasha Y. A1 - Frank, Markus H. T1 - ABCB5 Identifies Immunoregulatory Dermal Cells JF - Cell Reports N2 - Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5\(^+\) DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5\(^+\) DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy. KW - mesenchymal stem cells KW - P-glycoprotein KW - regulatory T cells KW - maintain immune homeostasis KW - malignant melanoma KW - in vivo KW - skin KW - generation KW - transplant KW - tolerance Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149989 VL - 12 SP - 1564 EP - 1574 ER - TY - JOUR A1 - Ramachandran, Sarada Devi A1 - Schirmer, Katharina A1 - Münst, Bernhard A1 - Heinz, Stefan A1 - Ghafoory, Shahrouz A1 - Wölfl, Stefan A1 - Simon-Keller, Katja A1 - Marx, Alexander A1 - Øie, Cristina Ionica A1 - Ebert, Matthias P. A1 - Walles, Heike A1 - Braspenning, Joris A1 - Breitkopf-Heinlein, Katja T1 - In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells JF - PLoS One N2 - In this study we used differentiated adult human upcyte (R) cells for the in vitro generation of liver organoids. Upcyte (R) cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte (R) process). Proliferating upcyte (R) cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte (R) cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel\(^{TM}\), they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions. KW - adults KW - enzyme metabolism KW - albumins KW - primary cells KW - induction KW - expression KW - human heptocytes KW - mesenchymal stem cells KW - oragnoids KW - heptaocytes KW - drug metabolism Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139552 VL - 10 IS - 10 ER -