TY - JOUR A1 - Reynolds, David L. A1 - Hofmeister, Brigitte T. A1 - Cliffe, Laura A1 - Siegel, T. Nicolai A1 - Andersson, Britta A. A1 - Beverley, Stephen M. A1 - Schmitz, Robert J. A1 - Sabatini, Robert T1 - Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination JF - Molecular Microbiology N2 - The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription. KW - Trypanosoma-brucei KW - Transcription initiation KW - Messenger RNA KW - DNA KW - Genome KW - Cruzi KW - Hydroxymethyluracil KW - Expression KW - Parasite KW - Glucosyltransferase Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187727 VL - 101 IS - 4 ER - TY - JOUR A1 - Ziegler, C. A1 - Richter, J. A1 - Mahr, M. A1 - Gajewska, A. A1 - Schiele, M.A. A1 - Gehrmann, A. A1 - Schmidt, B. A1 - Lesch, K.-P. A1 - Lang, T. A1 - Helbig-Lang, S. A1 - Pauli, P. A1 - Kircher, T. A1 - Reif, A. A1 - Rief, W. A1 - Vossbeck-Elsebusch, A.N. A1 - Arolt, V. A1 - Wittchen, H.-U. A1 - Hamm, A.O. A1 - Deckert, J. A1 - Domschke, K. T1 - MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy JF - Translational Psychiatry N2 - Epigenetic signatures such as methylation of the monoamine oxidase A (MAOA) gene have been found to be altered in panic disorder (PD). Hypothesizing temporal plasticity of epigenetic processes as a mechanism of successful fear extinction, the present psychotherapy-epigenetic study for we believe the first time investigated MAOA methylation changes during the course of exposure-based cognitive behavioral therapy (CBT) in PD. MAOA methylation was compared between N=28 female Caucasian PD patients (discovery sample) and N=28 age- and sex-matched healthy controls via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. MAOA methylation was furthermore analyzed at baseline (T0) and after a 6-week CBT (T1) in the discovery sample parallelized by a waiting time in healthy controls, as well as in an independent sample of female PD patients (N=20). Patients exhibited lower MAOA methylation than healthy controls (P<0.001), and baseline PD severity correlated negatively with MAOA methylation (P=0.01). In the discovery sample, MAOA methylation increased up to the level of healthy controls along with CBT response (number of panic attacks; T0-T1: +3.37±2.17%), while non-responders further decreased in methylation (-2.00±1.28%; P=0.001). In the replication sample, increases in MAOA methylation correlated with agoraphobic symptom reduction after CBT (P=0.02-0.03). The present results support previous evidence for MAOA hypomethylation as a PD risk marker and suggest reversibility of MAOA hypomethylation as a potential epigenetic correlate of response to CBT. The emerging notion of epigenetic signatures as a mechanism of action of psychotherapeutic interventions may promote epigenetic patterns as biomarkers of lasting extinction effects. KW - Adult KW - Case-Control Studies KW - Cognitive Therapy KW - DNA Methylation KW - Epigenesis KW - Genetic KW - Female KW - Humans KW - Monoamine Oxidase/genetics KW - Panic Disorder/genetics KW - Panic Disorder/therapy KW - Sequence Analysis KW - DNA Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164422 IS - 6 ER - TY - JOUR A1 - Cui, Huanhuan A1 - Schlesinger, Jenny A1 - Schoenhals, Sophia A1 - Tonjes, Martje A1 - Dunkel, Ilona A1 - Meierhofer, David A1 - Cano, Elena A1 - Schulz, Kerstin A1 - Berger, Michael F. A1 - Haack, Timm A1 - Abdelilah-Seyfried, Salim A1 - Bulyk, Martha L. A1 - Sauer, Sascha A1 - Sperling, Silke R. T1 - Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA JF - Nucleic Acids Research N2 - DPF3 (BAF45c) is a member of the BAF chromatin remodeling complex. Two isoforms have been described, namely DPF3a and DPF3b. The latter binds to acetylated and methylated lysine residues of histones. Here, we elaborate on the role of DPF3a and describe a novel pathway of cardiac gene transcription leading to pathological cardiac hypertrophy. Upon hypertrophic stimuli, casein kinase 2 phosphorylates DPF3a at serine 348. This initiates the interaction of DPF3a with the transcriptional repressors HEY, followed by the release of HEY from the DNA. Moreover, BRG1 is bound by DPF3a, and is thus recruited to HEY genomic targets upon interaction of the two components. Consequently, the transcription of downstream targets such as NPPA and GATA4 is initiated and pathological cardiac hypertrophy is established. In human, DPF3a is significantly up-regulated in hypertrophic hearts of patients with hypertrophic cardiomyopathy or aortic stenosis. Taken together, we show that activation of DPF3a upon hypertrophic stimuli switches cardiac fetal gene expression from being silenced by HEY to being activated by BRG1. Thus, we present a novel pathway for pathological cardiac hypertrophy, whose inhibition is a long-term therapeutic goal for the treatment of the course of heart failure. KW - phosphorylation KW - DPF3a KW - HEY repressors KW - DNA KW - cardiac hypertrophy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166391 VL - 44 IS - 6 ER -