TY - THES A1 - Hecht [geb. Wagener], Reinhard Johannes T1 - Processing and Characterization of Bulk Heterojunction Solar Cells Based on New Organic n-Type Semiconductors T1 - Prozessierung und Charakterisierung von Bulk-Heterojucktion Solarzellen auf Basis von neuen organischen n-Halbleitern N2 - This thesis established the fabrication of organic solar cells of DA dye donors and fullerene acceptors under ambient conditions in our laboratory, however, with reduced power conversion efficiencies compared to inert conditions. It was shown that moisture had the strongest impact on the stability and reproducibility of the solar cells. Therefore, utilization of robust materials, inverted device architectures and fast fabrication/characterization are recommended if processing takes place in air. Furthermore, the dyad concept was successfully explored in merocyanine dye-fullerene dyads and power conversion efficiencies of up to 1.14 % and 1.59 % were measured under ambient and inert conditions, respectively. It was determined that the major drawback in comparison to comparable BHJ devices was the inability of the dyad molecules to undergo phase separation. Finally, two series of small molecules were designed in order to obtain electron transport materials, using the acceptor-core-acceptor motive. By variation of the acceptor units especially the LUMO levels could be lowered effectively. Investigation of the compounds in organic thin film transistors helped to identify promising molecules with electron transport properties. Electron transport mobilities of up to 7.3 × 10−2 cm2 V−1 s−1 (ADA2b) and 1.39 × 10−2 cm2 V−1 s−1 (AπA1b) were measured in air for the ADA and AπA dyes, respectively. Investigation of selected molecules in organic solar cells proved that these molecules work as active layer components, even though power conversion efficiencies cannot compete with fullerene based devices yet. Thus, this thesis shows new possibilities that might help to develop and design small molecules as substitutes for fullerene acceptors. N2 - In dieser Arbeit wurde gezeigt, dass die Herstellung und Charakterisierung von organischen Solarzellen auf Basis von kleinen DA-Farbstoffen in Kombination mit Fullerenakzeptoren unter Umgebungsbedingungen möglich ist. Außerdem konnte herausgefunden werden, dass die Luftfeuchtigkeit den größten Einfluss auf die Stabilität und die Reproduzierbarkeit der organischen Solarzellen hat. Aus diesem Grund sind der Austausch labiler Komponenten, die Verwendung von invertierten Bauteilarchitekturen sowie eine zügige Herstellung und Charakterisierung bei Prozessierung an Luft zu empfehlen. In weiteren Experimenten konnte das Dyadenkonzept erfolgreich angewendet werden, sodass sich Effizienzen von 1.14 und 1.59 % unter ambienten bzw. inerten Bedingungen messen ließen. Das Unvermögen der Dyaden, separate Phasen aus Donor- und Akzeptorverbindung zu bilden, konnte als größte Schwäche der Verbindungen ausgemacht werden. Schlussendlich wurden zwei Serien von Molekülen mit der Absicht Elektronentransportmaterialien zu generieren basierend auf einem Akzeptor-Kern-Akzeptor-Strukturmotiv entworfen. Die Variation der Akzeptoren ermöglichte in der Tat eine systematische Absenkung der Grenzorbitale und insbesondere der LUMO-Niveaus. Weiterhin wurden die Verbindungen in organischen Dünnfilmtransistoren untersucht, um mehr über ihre Ladungstransporteigenschaften zu erfahren. Dabei konnten Moleküle ausgemacht werden, die zum Elektronentransport an Luft in der Lage sind. Für die besten ADA- und AπA-Farbstoffe konnten so jeweils Elektronenmobilitäten von 7.3 × 10−2 cm2 V–1 s–1 (ADA2b) und 1.39 × 10−2 cm2 V–1 s–1 (AπA1b) gemessen werden. Weitere Untersuchungen von ausgewählten Verbindungen in organischen Solarzellen, konnten beweisen, dass diese neu kreierten Moleküle im Prinzip als Aktivmaterialien funktionieren können, wenn auch die erzielten Effizienzen noch nicht mit denen von Fulleren-basierten Solarzellen konkurrieren konnten. Damit zeigt diese Arbeit neue Möglichkeiten auf, die bei der Entwicklung und dem Design von kleinen Molekülen als Alternativen zu Fullereneakzeptoren hilfreich sein können. KW - organic solar cells KW - A-D-A dyes KW - dyads KW - merocyanines KW - n-type semiconductors KW - Heterosolarzelle KW - Halbleiter KW - Merocyanine Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161385 ER - TY - THES A1 - Rauh, Daniel T1 - Impact of Charge Carrier Density and Trap States on the Open Circuit Voltage and the Polaron Recombination in Organic Solar Cells T1 - Einfluss der Ladungsträgerdichte und Störstellen auf die Leerlaufspannung und die Polaronenrekombination in organischen Solarzellen N2 - The focus of this work is studying recombination mechanisms occurring in organic solar cells, as well as their impact on one of their most important parameters — the open circuit voltage Voc. Firstly, the relationship between Voc and the respective charge carrier density n in the active layer under open circuit conditions is analyzed. Therefor, a model after Shockley for the open circuit voltage is used, whose validity is proven with the aid of fits to the measured data. Thereby, it is emphasized that the equation is only valid under special conditions. In the used reference system P3HT:PC61BM the fits are in agreement with the measurement data only in the range of high temperatures (150 - 300 K), where Voc increases linearly with decreasing temperature. At lower temperatures (50 – 150 K), the experiment shows a saturation of Voc. This saturation cannot be explained with the model by the measured falling charge carrier density with decreasing temperatures. In this temperature range Voc is not directly related to the intrinsic properties of the active layer. Voc saturation is due to injection energy barriers at the contacts, which is ascertained by macroscopic simulations. Furthermore, it is observed that Voc in the case of saturation is equivalent to the so-called built-in potential. The difference between the built-in potential and the energy gap corresponds thereby to the sum of the energy barriers at both contacts. With the knowledge of the Voc(n) dependency for not contact limited solar cells, it is possible to investigate the recombination mechanisms of charge carriers in the active layer. For Langevin recombination the recombination rate is Rn2 (recombination order RO = 2), for Shockley-Read-Hall (SRH) Rn1 (RO=1); in various publications RO higher than two is reported with two main explanations. 1: Trap states for charge carriers exist in the respective separated phases, i.e. electrons in the acceptor phase and holes in the donor phase, which leads to a delayed recombination of the charge carriers at the interface of both phases and finally to an apparent recombination order higher than 2. 2: The enhanced R(n) dependency is attributed to the so called recombination prefactor, which again is dependent from n dependent mobility µ. It is shown that for the system P3HT:PC61BM at room temperature the µ(n) dependency does nearly completely explain the higher RO but not at lower temperatures which in this case supports the first explanation. In the material system PTB7:PC71BM the increased RO cannot be explained by the µ(n) dependency even at room temperature. To support the importance of trap states in combination with a phase separation for the explanation of the enhanced RO, additional trap states were incorporated in the solar cells to investigate their influence on the recombination mechanisms. To achieve this, P3HT:PC61BM solar cells were exposed to synthetic air (in the dark and under illumination) or TCNQ was added in small concentrations to the active layer which act as electron traps. For the oxygen degraded solar cell the recombination order is determined by a combination of open Voc-transients and Voc(n) measurements. Thereby, a continuous increase of the recombination order from 2.4 to more than 5 is observed with higher degradation times. By the evaluation of the ideality factor it can be shown that the impact of SRH recombination is increasing with higher trap concentration in relation to Langevin recombination. A similar picture is revealed for solar cells with TCNQ as extrinsic trap states. Finally, a phenomenon called s-shaped IV-curves is investigated, which can sometimes occur for solar cells under illumination. As course of this a reduced surface recombination velocity can be found. Experimentally, the solar cells were fabricated using a special plasma treatment of the ITO contact. The measured IV-curves of such solar cells are reproduced by macroscopic simulations, where the surface recombination velocity is reduced. Hereby, it has to be distinguished between the surface recombination of majority and minority charge carriers at the respective contacts. The theory can be experimentally confirmed by illumination level dependent IV-curves as well as short circuit current density and open circuit voltage transients. N2 - Im Fokus der vorliegenden Arbeit liegen die Rekombinationsmechanismen welche in organischen Solarzellen vorkommen, sowie deren Einfluss auf eine der wichtigsten charakteristischen Kenngrößen dieser - der Leerlaufspannung Voc. Zuerst wird der Zusammenhang zwischen Voc und zugehöriger Ladungsträgerdichte n in der aktiven Schicht unter Leerlaufbedingungen untersucht. Dazu wird ein Modell nach Shockley für die Leerlaufspannung verwendet, dessen Gültigkeit mit Hilfe von Fits an die Messdaten überprüft wird. Dabei stellt sich heraus, dass dieses nur für bestimmte Rahmenbedingungen gültig ist. Im verwendeten Referenzsystem P3HT:PC61BM stimmen die Fits nur im Bereich höherer Temperaturen (150 - 300 K), in denen Voc linear mit sinkenden Temperaturen steigt, mit den Messwerten überein. Im Bereich tieferer Temperaturen (50 - 150 K) stellt sich experimentell eine Sättigung von Voc ein. Diese Sättigung kann mit der gemessenen fallenden Ladungsträgerdichten mit sinkender Temperatur laut Modell nicht erklärt werden. Voc steht in diesem Temperaturbereich deshalb in keinem direkten Zusammenhang zu den intrinsischen Eigenschaften der aktiven Schicht. Die Ursache der Sättigung sind Energiebarrieren an den Kontakten, was mit Hilfe von makroskopischen Simulationen nachgewiesen werden kann. Weiterhin wird festgestellt, dass Voc im Sättigungsfall genau dem sogenannten eingebauten Potential entspricht. Die Differenz zwischen dem eingebauten Potential und der Bandlücke entspricht dabei der Summe der Energiebarrieren an beiden Kontakten. Mit der Erkenntnis, dass für nicht kontaktlimitierte Solarzellen eine Voc(n) Abhängigkeit besteht, kann man sich den Rekombinationsmechanismen in der aktiven Schicht widmen. Für Langevin Rekombination ist die Rekombinstionsrate Rn2 (Rekombinationsordnung RO = 2), für Shockley-Read-Hall (SRH) Rn1 (RO=1); experimentell wird in der Literatur aber von RO größer 2 berichtet wofür zwei Erklärungen existieren. 1.: Es gibt Fallenzustände für Ladungsträger in den entsprechenden separaten Phasen, d.h. Elektronen in der Akzeptorphase und Löcher in der Donatorphase, was in einer verzögerten Rekombination der Ladungsträger an der Grenzfläche beider Phasen führt und damit zu einer höheren RO als 2. 2.: Die erhöhte R(n)-Abhängigkeit wird dem sogenannten Rekombinationsvorfaktor zugeschrieben, welcher wiederum von der n-abhängigen Mobilität µ abhängt. Es wird gezeigt, dass für das System P3HT:PC61BM bei Raumtemperatur der µ(n) Verlauf fast komplett die erhöhte RO erklären kann, allerding nicht bei tieferen Temperaturen welches dort die erste Erklärung stützt. Im Materialsystem PTB7:PC71BM ist schon für Raumtemperatur die erhöhte RO nicht durch den µ(n) Verlauf erklärbar. Um zu untermauern, dass Störstellen in Kombination mit einer Phasenseparation für die erhöhte RO verantwortlich sind, wurden Störstellen in Solarzellen eingebaut um deren Einfluss auf die Rekombinationsmechanismen zu untersuchen. Dazu wurden P3HT:PC61BM Solarzellen zum einen synthetischer Luft ausgesetzt (im Dunkeln und unter Beleuchtung) zum anderen der aktiven Schicht in geringen Konzentrationen TCNQ beigefügt, welches als Elektronenstörstelle fungiert. Für die O2 degradierte Solarzelle wird die RO aus einer Kombination von Voc-Transienten und Voc(n) Messungen bestimmt. Dabei kann mit erhöhter Degradation ein kontinuierlicher Anstieg der RO von 2.4 auf mehr als 5 beobachtet werden. Durch die Auswertung des Idealitätsfaktors kann gezeigt werden, dass der Einfluss der SRH Rekombination in Relation zur Langevin Rekombination mit erhöhter Störstellenkonzentration zunimmt. Ein ähnliches Bild ergibt sich für die Solarzellen mit TCNQ als extrinsische Störstellen. Zuletzt wird das Phänomen s-förmiger Strom-Spannungs-Kennlinien untersucht, welches manchmal für Solarzellen unter Beleuchtung auftritt. Als Ursache kann eine reduzierte Oberflächenrekombinationsgeschwindigkeit ausgemacht werden. Experimentell wurden die Solarzellen mit einer speziellen Plasmabehandlung des ITO Kontaktes hergestellt. Die gemessenen IV-Kennlinien solcher Solarzellen können anhand von makroskopischen Simulationen nachgebildet werden, indem darin die Oberflächenrekombinationsgeschwindigkeit reduziert wird, wobei man dabei die Oberflächenrekombination von Majoritäts- bzw. Minoritätsladungsträgern an den entsprechenden Kontakten unterscheiden muss. Experimentell untermauert werden kann die Theorie anhand von lichtleistungsabhängigen IV-Kurven bzw. Transienten der Kurzschlussstromdichte und der Leerlaufspannung. KW - Organische Solarzelle KW - organische Solarzellen KW - Leerlaufspannung KW - Störstellen KW - recombination KW - organic solar cells KW - open circuit voltage KW - trap states KW - Fotovoltaik KW - Organischer Halbleiter KW - Rekombination Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90083 ER - TY - THES A1 - Sperlich, Andreas T1 - Electron Paramagnetic Resonance Spectroscopy of Conjugated Polymers and Fullerenes for Organic Photovoltaics T1 - Elektron-Paramagnetische Resonanz-Spektroskopie von konjugierten Polymeren und Fullerenen für die organische Photovoltaik N2 - In the presented thesis, the various excited states encountered in conjugated organic semiconductors are investigated with respect to their utilization in organic thin-film solar cells. Most of these states are spin-baring and can therefore be addressed by means of magnetic resonance spectroscopy. The primary singlet excitation (spin 0), as well as positive and negative polaronic charge carriers (spin 1/2) are discussed. Additionally, triplet excitons (spin 1) and charge transfer complexes are examined, focussing on their differing spin-spin interaction strength. For the investigation of these spin-baring states especially methods of electron paramagnetic resonance (EPR) are best suited. Therefore according experimental methods were implemented in the course of this work to study conjugated polymers, fullerenes and their blends with continuous wave as well as time-resolved EPR and optically detected magnetic resonance. N2 - Die vorliegende Arbeit beschäftigt sich mit den vielfältigen Anregungszuständen in konjugierten organischen Halbleitern mit Hinblick auf deren Verwendung in organischen Dünnschicht-Solarzellen. Diese verschiedenen Zustände sind zumeist Spin-behaftet und daher mit Methoden der Magnetresonanz adressierbar. Es wird unterschieden zwischen Singulett-Exzitonen (Spin 0) als primärer Photoanregung, sowie positiven und negativen polaronischen Ladungsträgern (Spin 1/2). Des Weiteren werden Triplet-Exzitonen (Spin 1) und Ladungstransferkomplexe behandelt, die sich durch unterschiedlich starke Spin-Spin Wechselwirkung auszeichnen. Zur Untersuchung dieser Spin-behafteten Zustände bieten sich insbesondere Methoden der Elektron-Paramagnetischen Resonanz-Spektroskopie (EPR) an. Im Zuge dieser Arbeit wurden dafür entsprechede Messmethoden der Dauerstrich (cw) EPR, zeitaufgelösten, transienten EPR und der optisch detektierten Magnetresonanz (ODMR) implementiert und zur Erforschung von konjugierten Polymeren, Fullerenen und deren Mischungen eingesetzt. KW - Organische Solarzelle KW - Fotovoltaik KW - Organischer Halbleiter KW - organische Photovoltaik KW - organische Halbleiter KW - organic photovoltaic KW - organic solar cells KW - Elektronenspinresonanz KW - Fullerene KW - Konjugierte Polymere KW - Photovoltaik KW - Spektroskopie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81244 ER - TY - THES A1 - Bürckstümmer, Hannah T1 - Merocyanine dyes for solution-processed organic bulk heterojunction solar cells T1 - Merocyaninfarbstoffe für lösungsprozessierte organische bulk-heterojunction Solarzellen N2 - The technology of organic photovoltaics offers the possibility of low-cost devices due to easy fabrication procedures and low material consumption and at the same time high flexibility concerning the applied substrates or design features such as the color palette. Owing to these benefits, this research field is highly active, being reflected by the continuously rising number of publications. Chapter 1 gives an extensive overview of a part of these reports, namely the field of solution-processed BHJ organic solar cells using small molecules as electron-donating materials. In the early years of this research area (2006-2008), well known hole transporting materials such as triphenylamine based chromophores, oligothiophenes and polyaromatic hydrocarbons were applied. However, many of these dyes lacked absorption at longer wavelengths and were therefore limited in their light harvesting qualities. Later, chromophores based on low band gap systems consisting of electron-donating and electron-accepting units showing internal charge transfer overcame this handicap. Today, donor-substituted diketopyrrolopyrroles (D-A-D chromophores), squaraines (D-A-D chromophores) and acceptor substituted oligothiophenes (A-D-A chromophores) are among the most promising dyes for small molecule based organic solar cells with PCEs of 4-5%. This work is based on the findings of the groups of Würthner and Meerholz, which tested merocyanine dyes for the first time in organic BHJ solar cells.4 According to the Bässler theory85, the high dipolarity of these dyes should hamper the charge transport, but the obtained first results with PCE of 1.7% proved the potenital of this class of dyes for this application. Merocyanine dyes offer the advantages of facile synthesis and purification, high tinctorial strength and monodispersity. Additionally, the electronic structure of the dyes, namely the absorption as well as the electrochemical properties, can be adjusted by using the right combination of donor and acceptor units. For these reasons, this class of dye is highly interesting for the application in organic solar cells. It was the aim of the thesis to build more knowledge about the potential and limitations of merocyanines in BHJ photovoltaic devices. By screening a variety of donor and acceptor groups a comprehensive data set both for the molecular materials as well as for the respective solar devices was generated and analyzed. As one focus, the arrangement of the chromophores in the solid state was investigated to gain insight about the packing in the solar cells and its relevance for the performance of the latter. To do so, X-ray single crystal analyses were performed for selected molecules. By means of correlations between molecular properties and the characteristics of the corresponding solar cells, several design rules to generate efficient chromophores for organic photovoltaics were developed. The different donor and acceptor moieties applied in this work are depicted in the following ... N2 - Die Technologie der organischen Photovoltaik eröffnet die Chance, kostengünstige Solarzellen herzustellen, da einfache Produktionstechniken genutzt werden können und nur geringe Materialmengen benötigt werden. Gleichzeitig bietet sie hohe Flexibilität bezüglich des Designs, sowohl was die eingesetzten Substrate als auch die gewünschte Farbpalette betrifft. Aufgrund dieser Vorteile ist der Forschungsbereich der organischen Solarzellen hochaktuell, was sich auch in der stetig wachsenden Zahl an Publikationen widerspiegelt. Kapitel 1 bietet einen umfassenden Literaturüberblick über den Bereich der lösungs-prozessierten organischen BHJ Solarzellen basierend auf niedermolekularen Materialien. In den frühen Jahren dieses Forschungsbereiches (2006-2008) wurden hauptsächlich altbekannte organische Lochleitermaterialien wie triphenylaminbasierte Moleküle, Oligothiophene oder polyaromatische Hydrocarbonverbindungen eingesetzt. Viele dieser Verbindungen zeigten jedoch Defizite betreffend der Absorption, da sie nur bei relativ kurzen Wellenlängen absorbierten und dadurch nur einen Bruchteil des eingestrahlten Sonnenlichts nutzen konnten. Später wurde dieser Nachteil durch sogenannte „low band gap“ Systeme, welche elektronengebenden und elektronenziehenden Einheiten aufweisen, oder durch Kombinationen der klassischen elektronenreichen Lochleiter mit Akzeptoreinheiten überwunden. Zu den vielversprechendsten Verbindungsklassen für die Anwendung in lösungsprozessierten niedermolekularen organischen Solarzellen gehören heute Donor-substituierte Diketopyrrolopyrrole (D-A-D Chromophor), Quadratsäurederivate (D-A-D Chromophor) und Akzeptor-substituierte Oligothiophene (A-D-A Chromophor), deren beste Vertreter Wirkungsgrade von 4-5% erzielen. Die vorliegende Arbeit basiert auf den Erkenntnissen der Arbeitsgruppen Würthner und Meerholz, die als erste Merocyaninfarbstoffe in organischen BHJ Solarzellen untersuchten.4 Gemäß der Bässler-Theorie85 sollte das hohe Grundzustandsdipolmoment dieser Verbindungen den Ladungsträgertransport erheblich behindern. Die erhaltenen, vielversprechenden Wirkungsgrade von 1.7% beim ersten Materialscreenin zeigen jedoch die Eignung dieser Fabstoffklasse für organische Solarzellen. Merocyanine bieten einige Vorteile: sie lassen sich einfach herstellen und aufreinigen, zeigen hohe Farbstärken und sind monodisperse Verbindungen. Zudem lässt sich der elektronische Charakter der Chromophore, also die Absorptions- und elektrochemischen Eigenschaften nahezu beliebig verändern, indem man die passende Donor-Akzeptor Kombination wählt. Deshalb ist diese Farbstoffklasse für die Applikation der organischen Solarzellen hochinteressant. Ziel dieser Doktorarbeit war es, ein tieferes Verständnis über das Potential und mögliche Beschränkungen von Merocyaninen in organische Solarzellen zu erlangen. Durch Untersuchung einer Reihe von Donor- und Akzeptoreinheiten wurde ein umfassender Datensatz generiert und analysiert, welcher sowohl die molekularen Materialien als auch die entsprechenden Solarzellen beinhaltet. Die Anordnung der Chromophore im Festkörper wurde bei ausgewählten Farbstoffen mittels Einkristall-Röntgenstrukturanalyse untersucht, um Erkenntnisse über das Packungsverhalten der Moleküle in den Solarzellen und dessen Relevanz für die Leistungsfähigkeit der Zellen zu gewinnen. Anhand von Korrelationen zwischen den molekularen Eigenschaften und den Kennzahlen der entsprechenden Solarzellen wurden mehrere Richtlinien zur Entwicklung von effizienten Chromophoren für organische Solarzellen abgeleitet. Die in dieser Arbeit eingesetzten Akzeptor- und Donoreinheiten sind im Folgenden abgebildet ... KW - organische Solarzelle KW - Merocyanine KW - organische Solarzellen KW - Merocyanin KW - organic solar cells KW - merocyanine dye Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66879 ER - TY - THES A1 - Baumann, Andreas T1 - Charge Transport and Recombination Dynamics in Organic Bulk Heterojunction Solar Cells T1 - Ladungstransport und Rekombination in organischen Heterogemisch-Solarzellen N2 - The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as "Time-of-Flight" (TOF)), as well as the transient charge extraction technique of "Charge Carrier Extraction by Linearly Increasing Voltage" (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics, i.e. charge transport and charge carrier recombination, in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are studied in view of the charge carrier transport and recombination dynamics. Finally, within the framework of this work the technique of photo-CELIV is improved. With the modified technique it is now feasible to study the mobility and lifetime of charge carriers in organic solar cells under operating conditions. N2 - Der Ladungstransport in ungeordneten organischen "bulk heterojunction" (Heterogemisch, Abk.: BHJ) Solarzellen stellt einen kritischen Prozess dar, der den Wirkungsgrad wesentlich beeinflusst. Aufgrund der großen Nachfrage neuer, vielversprechender Materialien für die organische Photovoltaik, ist es um so wichtiger nicht nur ihre photophysikalischen sondern auch deren elektrischen Eigenschaften zu charakterisieren. Gerade letztere erfordern experimentelle Messmethoden, die an funktionsfähigen Solarzellen angewandt werden können. Zur experimentellen Untersuchung des Landungstransportes in organischen Solarzellen werden in dieser Arbeit die Methoden der transienten Photoleitfähigkeit, auch bekannt als "Time-of-Flight" (TOF), sowie die transiente Ladungsextraktionsmethode "Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) verwendet. Gerade Letztere ermöglicht es an Dünnschichtsystemen von nur wenigen 100 nm, eine typische Schichtdicke bei organischen Solarzellen, den Ladungstransport aber auch die Rekombination von Elektronen und Löchern zu untersuchen. Entscheidend für eine vielversprechende funktionsfähige organische BHJ Solarzelle ist dabei eine günstige Morphologie, die eine effiziente Generation von Ladungsträger, sowie deren Abführung zu den Elektroden erlaubt. Dabei wird in dieser Arbeit der Einfluss der räumlichen, als auch der der energetischen Unordnung der photoaktiven Schicht auf den Ladungstransport und der Rekombination der Ladungsträger untersucht. Das weit verbreitete Materialsystem bestehend aus Poly-3-(Hexyl) Thiophen (P3HT) und [6,6]-Phenyl C61 Buttersäure Methylester (PC61BM) dient dabei als Donator-Akzeptor Referenzsystem. Neuartige Donator- bzw. Akzeptor-Materialien und deren Potential für künftige Anwendungen in der organischen Photovoltaik werden hinsichtlich ihrer Ladungsträgereigenschaften mit dem Referenzmaterialsystem verglichen. Im Zuge der Kommerzialisierung organischer Solarzellen bzw. Solarmodulen ist die Anfälligkeit der Zellen gegenüber äußeren Umwelteinflüssen, wie Sauerstoff oder Wasser, in den Vordergrund des wissenschaftlichen Interesses gerückt. Dementsprechend wird in dieser Arbeit auch der Einfluss von synthetischer Luft auf den Transport und die Rekombination von Ladungsträgern und somit auf den Wirkungsgrad der Solarzelle untersucht und diskutiert. Schließlich wird im Rahmen dieser Arbeit eine Erweiterung der photo-CELIV Messmethode vorgestellt. Diese ermöglicht es die Lebensdauer und den Transport von Ladungsträgern in organischen Dünnschicht-Solarzellen unter realen Arbeitsbedingungen, d.h. Beleuchtung unter einer Sonne bei Raumtemperatur, zu bestimmen. KW - Photovoltaik KW - Ladungstransport KW - Rekombination KW - organische Photovoltaik KW - Ladungsträgerrekombination KW - photo-CELIV KW - organic solar cells KW - organic semicondcutors KW - recombination KW - photo-CELIV Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-64915 ER - TY - THES A1 - Schafferhans, Julia T1 - Investigation of defect states in organic semiconductors: Towards long term stable materials for organic photovoltaics T1 - Untersuchung elektronischer Störstellen in organischen Halbleitern: Auf dem Weg zu langzeitstabilen Materialien für die organische Photovoltaik N2 - In this work, the trap states in the conjugated polymer P3HT, often used as electron donor in organic bulk heterojunction solar cells, three commonly used fullerene based electron acceptors and P3HT:PC61BM blends were investigated. Furthermore, the trap states in the blend were compared with these of the pure materials. Concerning the lifetime of organic solar cells the influence of oxygen on P3HT and P3HT:PC61BM blends was studied. The experimental techniques used to investigate the trap states in the organic semiconductors were (fractional) thermally stimulated current (TSC) and current based deep level transient spectroscopy (Q-DLTS). Fractional TSC measurements on P3HT diodes revealed a quasi-continuous trap distribution. The distribution suggested two different traps in P3HT with approximately Gaussian energy distributions and maxima at about 50 meV and 105 meV. Thereby, the former was attributed to the tail states within the regular Gaussian density of states due to the low activation energy. The latter, deeper traps, however, exhibited a strong dependence on oxygen. Exposure of the P3HT diodes to oxygen, ambient air and synthetic (dry) air all revealed an increase of the deeper traps density with exposure time in the same manner. While the lower limit of the trap density in non aged P3HT samples was in the range of (1.0 − 1.2)×10^22 m^−3, it was more than doubled after an exposure of 50 h to air. An increase of the trap density with oxygen exposure time was also seen in the Q-DLTS measurements accompanied with an increase of the temperature dependence of the emission rates, indicating an enhanced formation of deeper traps. Due to the raise in density of the deeper traps, the charge carrier mobility in P3HT significantly decreased, as revealed by photo-CELIV measurements, resulting in a loss in mobility of about two orders of magnitude after 100 h exposure to synthetic air. The increased trap density was attributed to p-doping of P3HT by the transfer of an electron to adsorbed oxygen. This effect was partially reversible by applying vacuum to the sample for several hours or, more significantly, by a thermal treatment of the devices in nitrogen atmosphere. The trap states in the methanofullerenes PC61BM, bisPC61BM and PC71BM were investigated by TSC measurements. PC61BM yielded a broad quasi-continuous trap distribution with the maximum of the distribution at about 75 meV. The comparison of the TSC spectra of the three methanofullerenes exhibited significant differences in the trap states with higher activation energies of the most prominent traps in bisPC61BM and PC71BM compared to PC61BM. This probably originates from the different isomers bisPC61BM and PC71BM consist of. Each of the isomers yields different LUMO energies, where the lower ones can act as traps. The lower limit of the trap density of all of the three investigated fullerene derivatives exhibited values in the order of 10^22 m^−3, with the highest for bisPC61BM and the lowest for PC61BM. By applying fractional TSC measurements on P3HT:PC61BM solar cells, it was shown that the trap distribution in the blend is a superposition of the traps in pure P3HT and PC61BM and additional deeper traps in the range of about 250 meV to 400 meV. The origin of these additional traps, which can not be related to the pure materials, was attributed to a higher disorder in the blend and P3HT/PC61BM interfaces. This conclusion was supported by standard TSC and Q-DLTS measurements performed on pristine and annealed P3HT:PC61BM blends, exhibiting a higher ratio of the deep traps in the pristine samples. The lower limit of the trap density of the investigated annealed solar cells was in the range of (6−8)×10^22 m^−3, which was considerably higher than in the pure materials. The influence of oxygen on P3HT:PC61BM solar cells was investigated by exposure of the devices to synthetic air under specific conditions. Exposure of the solar cells to oxygen in the dark resulted in a strong decrease in the power conversion efficiency of 60 % within 120 h, which was only caused by a loss in short-circuit current. Simultaneous illumination of the solar cells during oxygen exposure strongly accelerated the degradation, resulting in an efficiency loss of 30 % within only 3 h. Thereby, short-circuit current, open-circuit voltage and fill factor all decreased in the same manner. TSC measurements revealed an increase of the density of deeper traps for both degradation conditions, which resulted in a decrease of the mobility, as investigated by CELIV measurements. However, these effects were less pronounced than in pure P3HT. Furthermore, an increase of the equilibrium charge carrier density with degradation time was observed, which was attributed to oxygen doping of P3HT. With the aid of macroscopic simulations, it was shown that the doping of the solar cells is the origin of the loss in short-circuit current for both degradation conditions. N2 - In der vorliegenden Arbeit wurden die elektronischen Störstellen in dem konjugierten Polymer P3HT, welches häufig als Elektronendonator in organischen Mischabsorbersolarzellen verwendet wird, in drei auf Fullerenen basierenden Elektronenakzeptoren und im P3HT:PC61BM Gemisch untersucht. Des Weiteren wurden die Störstellen im Gemisch mit denen der reinen Materialien verglichen. Im Hinblick auf die Lebensdauer organischer Solarzellen wurde der Einfluss von Sauerstoff auf P3HT und das P3HT:PC61BM Gemisch untersucht. Die verwendeten Methoden zur Untersuchung der Störstellen waren (fraktionierte) thermisch stimulierte Ströme (TSC) und strombasierte transiente Störstellenspektroskopie (Q-DLTS). Fraktionierte TSC Messungen an P3HT Dioden ergaben eine quasi-kontinuierliche Störstellenverteilung. Die Verteilung lies darauf schließen, dass in P3HT zwei verschiedene Störstellen mit jeweils annähernd gaußförmiger energetischer Verteilung vorliegen, deren Maxima Aktivierungsenergien von 50 meV und 105 meV besitzen. Erstere wurde dabei den Ausläufern der regulären gaußförmigen DOS zugewiesen. Die tiefere Störstelle wies eine starke Abhängigkeit von Sauerstoffexposition auf. Das gezielte Aussetzten von P3HT Dioden an Sauerstoff, ergab eine Zunahme in der Dichte der tieferen Störstellen mit zunehmender Expositionszeit. Während die untere Abschätzung der Störstellendichte für ungealterte P3HT Proben im Bereich von (1.0 − 1.2)x10^22 m^−3 lag, hat sich diese nach 50 Std. an Luft mehr als verdoppelt. Eine Zunahme der Störstellendichte durch Sauerstoffexposition wurde ebenfalls mit Q-DLTS Messungen beobachtet. Die Zunahme der Störstellenkonzentration führte zu einer signifikanten Abnahme der Ladungsträgerbeweglichkeit, wie mittels photo-CELIV Messungen gezeigt wurde. Die Beweglichkeitsabnahme betrug dabei etwa zwei Größenordnungen nach 100 Std. Exposition an synthetischer Luft. Die erhöhte Störstellendichte wurde der p-Dotierung des Polymers zugeschrieben, welche durch Elektronentransfer von P3HT auf angelagerten Sauerstoff hervorgerufen wird. Dieser Effekt war teilweise reversibel, u.a. durch Tempern der Proben in Stickstoffatmosphäre. Die Störstellen in den Methanofullerenen PC61BM, bisPC61BM und PC71BM wurden mittels TSC Messungen untersucht. Dabei ergaben sich wesentliche Unterschiede in den Störstellenspektren, mit höheren Aktivierungsenergien der ausgeprägtesten Störstellen in bisPC61BM und PC71BM verglichen mit PC61BM. Dies ist auf die verschiedenen Isomere, aus denen bisPC61BM und PC71BM bestehen, zurückzuführen. Jedes der Isomere besitzt verschiedene LUMO Niveaus, wobei die tiefer liegenden als Störstellen fungieren können. Die untere Abschätzung der Störstellendichte aller drei untersuchten Methanofullerene lag in der Größenordnung von 10^22 m^−3, mit der höchsten Störstellenkonzentration für bisPC61BM und der niedrigsten für PC61BM. Mittels fraktionierter TSC Messungen an P3HT:PC61BM Solarzellen wurde gezeigt, dass die Störstellenverteilung im Gemisch eine Überlagerung der Störstellen der Einzelmaterialien und zusätzlicher tiefer gelegener Ladungsträgerfallen mit Aktivierungsenergien von etwa 250 meV bis 400 meV ist. Diese zusätzlichen Störstellen wurden der höheren Unordnung im Gemisch und P3HT/PC61BM Grenzflächen zugeschrieben. Diese Folgerung wurde durch TSC und DLTS Messungen gestützt, welche an ungetemperten und getemperten P3HT/PC61BM Gemischen durchgeführt wurden und einen erhöhten Anteil tiefer Störstellen in der ungetemperten Solarzelle darlegten. Die untere Abschätzung der Störstellendichte lag für die untersuchten getemperten Solarzellen im Bereich von (6 − 8)x10^22 m^−3 und somit deutlich höher als in den Einzelmaterialien. Der Einfluss von Sauerstoff auf P3HT:PC61BM Solarzellen wurde durch gezielte Exposition der Proben an synthetischer Luft untersucht. Die Exposition der Solarzellen an synthetischer Luft im Dunklen resultierte in einer starken Abnahme der Solarzelleneffizienz von 60 % innerhalb von 120 Std., was alleine von der Abnahme des Kurzschlussstroms herrührte. Gleichzeitige Beleuchtung der Solarzellen während der Sauerstoffexposition führte zu einer starken Beschleunigung des Effizienzverlustes. Hierbei nahmen Kurzschlussstrom, Leerlaufspannung und Füllfaktor gleichsam ab. TSC Messungen zeigten eine Zunahme in der Konzentration der tieferen Störstellen für beide Degradationsbedingungen, was zu einer Abnahme der Ladungsträgerbeweglichkeit führte, wie mittels CELIV Messungen gezeigt wurde. Jedoch waren diese beiden Effekte weniger ausgeprägt als in reinem P3HT. Des Weiteren wurde eine Zunahme der Gleichgewichtsladungsträgerkonzentration mit zunehmender Degradationszeit beobachtet, was auf Sauerstoffdotierung des P3HT zurückgeführt wurde. Unter Zuhilfenahme makroskopischer Simulationen konnte gezeigt werden, dass die Dotierung der Solarzellen die Ursache für die Abnahme des Kurzschlussstroms ist. KW - Organischer Halbleiter KW - Störstellenverteilung KW - Degradation KW - TSC KW - P3HT KW - Fullerenderivate KW - Polymere KW - Organische Solarzelle KW - DLTS KW - organic solar cells KW - trap distribution KW - organic semiconductors KW - methanofullerenes KW - conjugated polymers Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57669 ER -