TY - THES A1 - Brückner [geb. Christel], Theresa T1 - Novel application forms and setting mechanisms of mineral bone cements T1 - Neuartige Anwendungsformen und Abbindemechanismen mineralischer Knochenzemente N2 - Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications. Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 % was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting. While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes. Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength. Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications. The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes. N2 - Calciumphosphatzemente (CPC) stellen ein bedeutsames Knochenersatzmaterial dar, da sie selbstabbindend, biokompatibel, osteokonduktiv und der anorganischen Komponente humanen Knochens ähnlich sind. Durch ihre Lagerstabilität, neutrale Abbindereaktion und da Wasser zum Abbinden ausreicht, werden Hydroxylapatit (HA) bildende Zemente in dual abbindenden, Ca2+ chelatisierenden und vorgefertigten Zementen, verarbeitet. Bei dual abbindenden Formulierungen findet die Lösungs-Fällungs-Reaktion zeitgleich zur Polymerisation wasserlöslicher Monomere zu einem Hydrogel statt. Chelatbildner können mit aus dem Rohpulver freigesetzten Ca2+ Komplexe bilden. Vorgefertigte Zemente enthalten eine nicht-wässrige Trägerflüssigkeit, welche die Abbindereaktion bis zur Anwendung des Zements im feuchten Milieu verzögert. In der vorliegenden Arbeit wurden zwei dieser Reaktionsmechanismen zur Entwicklung HA basierter Anwendungsformen eingesetzt. Bohrbare Zemente sind von klinischem Interesse, da die Qualität einer Schrauben- oder Plattenosteosynthese durch Augmentation mit Zement verbessert werden kann. Bei einem bohrbaren, dual abbindenden Komposit aus HA und einem Poly-2-Hydroxyethylmethacrylat Hydrogel wurde der Einfluss des Monomergehalts und des Pulver-zu-Flüssigkeits-Verhältnisses auf die Abbindekinetik und mechanischen Eigenschaften untersucht. Während die Umwandlung zu HA und das Kristallwachstum mit zunehmendem Monomergehalt reduziert wurden, war eine minimale Konzentration von 50 % nötig, um signifikante Verbesserungen des Bruchverhaltens im Sinne eines niedrigen Biegemoduls und einer hohen Bruchenergie bei gesteigerter Biegefestigkeit nachzuweisen. Wurde der Flüssigkeitsgehalt erhöht, so konnte die Paste injiziert und nach 10 min des Abbindens gebohrt werden. Während klassische Knochenwachsformulierungen Infektionen, Entzündungen, gehinderte Knochenneubildung und mangelhafte Bioabbaubarkeit vorweisen, zeigt die hier dargestellte Formulierung überlegene Eigenschaften. Sie bestand aus HA-Rohpulvern und einer nicht-wässrigen, mit Wasser mischbaren Trägermasse aus Polyethylenglycol (PEG). Es wurde gezeigt, dass das Wachs kohäsiv und knetbar ist und Blutdruckbedingungen standhält. Bei Kontakt mit einer wässrigen Phase wurde das PEG diffusiv mit Wasser ausgetauscht, so dass ein poröser, nanokristalliner HA präzipitierte. Die Einbettung eines Modell-Antibiotikums bestätigte zudem die Eignung des neuartigen Wachses als Wirkstoffdepot. Als eine mögliche Behandlung von 2-dimensionalen, gekrümmten Defekten der Schädeldecke wurden präfabrizierte Laminate aus lagerstabiler, Carbonatapatit bildender Zementpaste und Polycaprolakton-Fasermatten mit definierter Porenarchitektur vorgestellt. Diese sind bis zu ihrer Anwendung flexibel und wurden durch einen schichtweisen Aufbau aus beiden Komponenten erzeugt, so dass der Polymerscaffold den Zement am Zerfließen hindert. Es wurde gezeigt, dass die Herstellung makroporöser Fasermatten durch Elektrospinnen aus der Lösung mittels eines perforierten Kollektors geeignet war, da der hohe Faservolumengehalt und angemessene Grenzflächeneigenschaften die erfolgreiche Herstellung mechanisch verstärkter Laminate ermöglichte. Bei milder Behandlung der Scaffolds mit alkalischer Lösung wurden die Grenzflächeneigenschaften weiter verbessert, was zu einer Steigerung der Biegefestigkeit führte. Seit einigen Jahren geht der Trend der Knochenzementforschung immer stärker in Richtung von Magnesiumphosphatzementen (MPC), da diese verglichen mit CPC ein erhöhtes Degradationspotential, eine hohe initiale Festigkeit, sowie die Freisetzung biologisch wertvoller Mg2+ aufweisen. Jedoch stellen gängige Systeme hohe Anforderungen bei der Verwendung in nicht-klassischen Zementen wie z.B. der Bedarf an Fremdionen und die saure sowie schnelle Abbindereaktion. Dennoch war es möglich, einen chelatisierenden MPC zu entwickeln, welcher ein breites Spektrum an möglichen Anwendungsformen bot. In einer Machbarkeitsstudie wurde untersucht, ob das Abbindeprinzip funktioniert. Die Paste bestand aus Farringtonit und unterschiedlich konzentrierter Phytinsäure. Diese sollte mit freigesetzten Mg2+ komplexieren. Durch Anpassung der Phytinsäurekonzentration und Zugabe von Magnesiumoxid als Abbindemodulator wurden bohrbare Formulierungen erhalten. Neben der Bohrbarkeit sind auch adhäsive Eigenschaften der Zemente im feuchten Milieu von klinischem Interesse, wobei kommerziell erhältliche Systeme meist nicht bioabbaubar sind. Daher wurde die ex vivo Klebehaftung dieses MPC nach 7 d unter nassen Bedingungen auf Knochen analysiert, wobei sich eine Abscherfestigkeit von 0.8 MPa ergab. Des Weiteren zeigten diese Zemente einen Masseverlust von 2 Gew.% innerhalb von 24 d in wässriger Umgebung, sowie die Freisetzung von 0.17 mg/g an osteogenen Mg2+ pro Tag. Zusammen mit der bestätigten Zytokompatibilität bezüglich humaner fetaler Osteoblasten ist dieses System vielversprechend für die Anwendung als abbaubarer Biozement für unterschiedliche klinische Zwecke. KW - Knochenzement KW - Calciumphosphat KW - Magnesiumphosphate KW - Verbundwerkstoff KW - Chelatbildner KW - dual setting KW - dual abbindend KW - premixed KW - präfabriziert KW - bone wax KW - Knochenwachs KW - drillable KW - bohrbar KW - bone adhesive KW - Knochenkleber Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157045 ER - TY - THES A1 - Heilig, Philipp T1 - Biomechanische Evaluation neuartiger Knochenersatzmaterialien zur Therapie der Tibiakopfimpressionsfraktur T1 - Biomechanical evaluation of new bone substitutes for the therapy of tibial head depression fractures N2 - Tibiakopfimpressionsfrakturen (AO 41-B2.2 – Schatzker III), welche aufgrund der demographischen Entwicklung in ihrer klinischen Relevanz zunehmen, erfordern zur bestmöglichen Frakturstabilisierung eine Schraubenosteosynthese sowie eine stabile metaphysäre Defektauffüllung mittels Knochenersatzmaterial, da anderenfalls ein sekundärer Repositionsverlust mit konsekutiver Gonarthrose droht. Die hierbei eingesetzten Kalziumphosphatzemente bringen klinische Probleme wie geringe mechanische Stabilität, fehlende Bohrbarkeit, welche eine unvollständige Defektauffüllung bedingt, ungewisse Resorption und unüberprüfte Herstellerangaben mit sich. Diese Studie hatte daher zum Ziel, einen bohrbaren Kalziumphosphatzement und einen Magnesiumphosphatzement, welche als vielversprechende Alternativen aufgrund der klinischen Schwierigkeiten erscheinen, gegen Graftys® Quickset und ChronOS™ Inject biomechanisch einzuordnen und somit langfristig zu einer verbesserten Frakturversorgung beizutragen. Der erste Teil der Studie bestand aus einer reinen Materialprüfung, in der mittels Zementquader Druckversuche und mittels Ausrisskörper Zugversuche durchgeführt wurden. Im zweiten Teil wurde ein Frakturmodell für Impressionsfrakturen an Kunstknochen benutzt, um die Zemente hierbei zur Defektauffüllung zu verwenden und alleine sowie in Kombination mit einer Osteosynthese in der Jail-Technik zu testen. Es erfolgte eine zyklische Belastung mit 3000 Zyklen zu je 250 N sowie anschließend eine Maximalkrafttestung (Load-To-Failure) mit Hilfe einer Materialprüfmaschine. Der Magnesiumphosphatzement zeigte die signifikant höchste Kompressionsfestigkeit von 100,50 MPa ± 15,97 MPa und Ausrisskraft sowie im Verbund mit Knochen das geringste Displacement, höchste Maximalkraft und Steifigkeit. Kalziumphosphat bohrbar wies aufgrund seines pseudoplastischen Verhaltens eine geringe biomechanische Stabilität und ein hohes Displacement auf, konnte aber durch seine Bohrbarkeit gegenüber Graftys® Quickset bei Einsatz mit Schrauben einen Vorteil im Displacement erreichen und somit die Vorzüge eines bohrbaren Knochenzements aufzeigen. ChronOS™ zeigte nach Aushärtung im Wasserbad mit einer Kompressionsfestigkeit von 0,58 MPa ± 0,14 MPa eine niedrige biomechanische Stabilität und wurde daher nicht weiter untersucht. Da die Viskosität eines Zements neben anderen Faktoren für die Interdigitation mit den Spongiosahohlräumen im Knochen verantwortlich ist, lässt sich, sofern diese angemessen ist, Rückschlüsse von der Materialprüfung auf das Verhalten im Knochen ziehen. Magnesiumphosphatzemente erscheinen aufgrund ihrer hohen biomechanischen Stabilität und vermutlich guten Resorptionsrate als vielversprechende Alternative zu herkömmlichen Kalziumphosphatzementen und bedürfen daher einer weiteren Überprüfung im Tierversuch. N2 - Bone substitutes are commonly used for filling up bone defects like in tibial head fractures. Different types of commercial bone substitutes are available, but comparable biomechanical studies especially analysing the substitute-bone interaction are missing. Thus, this study investigated the basic biomechanical characteristics of different bone substitutes, the bonesubstitute interface and the combination of substitute and screw osteosynthesis in a biomechanical fracture model for tibial head fractures (Schatzker III fractures). An in-house developed drillable apatite cement with HEMA-Hydrogel and an in-house developed magnesium phosphate cement were compared with two commercial cements, one brushite and one apatite cement, namely ChronOS™ Inject and Graftys® Quickset. In axial compression tests, the compressive strength and in screw pull-out tests, the pull-out strength were determined. In a tibial head fracture model, the bone substitutes were applied for filling up the bone defect, alone and in combination with a screw osteosynthesis. Displacement of the fracture fragment, maximum load and stiffness were calculated in cyclic and maximal axial loading tests. All tests were performed in the material testing machine Zwick Roell® Z020. The drillable apatite cement exhibited lower compressive strength (6.8±1.4 MPa) and screw pullout force (129±38 N) compared to its counterpart Graftys® (19.0±2.5 MPa, 295±39 N), but showed comparable displacement (~2 mm) and maximum load (3.5-3.8 kN) in the fracture model combined with the Jail-Technique. This may be due to the fact that the drillable cement allowed for drilling after replenishment and thus precise dispersion of the cement paste. The magnesium phosphate cement revealed a significant higher compressive strength (100.5±16.0 MPa), screw pull-out strength (1.7±0.2 kN) and a significant lower displacement (~1.5 mm) compared to the other bone substitutes. Probably due to its high intrinsic strength combined with a low viscosity to fill the complete defect. For the combination with screws, all bone substitutes revealed higher maximum loads and stiffness values. In conclusion, magnesium phosphate cement provided a high biomechanical stability in the pure material testing series and also in the substitute-bone interaction tests. Due to a low viscosity, the cement revealed a high integration in the spongiosa and a complete filling up of the bone defect around the placed screws. Moreover, a drillable bone substitute is favourable as the dispersion of the cement paste is not hindered by formerly placed screws. For tibial head fractures, only the combination of bone substitute and screw osteosynthesis provides under lower and maximal loading conditions an adequate stability. KW - Knochenzement KW - Knochenersatzmaterial KW - Bohrbarkeit KW - Tibiakopfbruch KW - Osteosynthese KW - bone substitute KW - drillable KW - struvite KW - tibial fracture KW - calcium phosphate cement KW - Tibiakopfimpressionsfraktur KW - Knochenzement KW - Magnesium Phosphat Zement KW - Kalzium Phosphat Zement KW - bohrbares Knochenersatzmaterial Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171037 ER -