TY - THES A1 - Bertolucci, Franco T1 - Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign) T1 - Operantes und klassisches Lernen in Drosophila melanogaster: das ignorant Gen (ign) N2 - One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called “idle experiment”, was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the “standard” heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring “learned helplessness” in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants. N2 - Eine der größten Herausforderungen in der Neurobiologie ist es, die neuronalen Prozesse zu verstehen, die Lernen und Gedächtnis zugrundeliegen. Welche biochemischen Pfade liegen z.B. der Koinzidenzdetektion von Reizen (klassische Konditionierung) oder einer Handlung und ihren Konsequenzen (operante Konditionierung) zugrunde? In welchen neuronalen Unterstrukturen werden diese Informationen gespeichert? Wie ähnlich sind die Stoffwechselwege, die diese beiden Arten des assoziativen Lernens vermitteln und auf welchem Niveau divergieren sie? Drosophila melanogaster ist wegen der Verfügbarkeit von Lern-Paradigmen und neurogenetischen Werkzeugen ein geeigneter Modell-Organismus, zum diese Fragen zu adressieren. Er ermöglicht eine umfangreiche Studie der Funktion des Gens S6KII, das in der Taufliege in klassischer und operanter Konditionierung unterschiedlich involviert ist (Bertolucci, 2002; Putz et al., 2004). Rettungsexperimenten zeigen, dass die olfaktorische Konditionierung in der Tully Maschine (ein klassisches, Pawlow’sches Konditionierungsparadigma) von dem Vorhandensein eines intakten S6KII Gens abhängt. Die Rettung war sowohl mit einer vollständigen, als auch einer partiellen Deletion erfolgreich und dies zeigt, dass der Verlust der phosphorylierenden Untereinheit der Kinase die Hauptursache des Funktionsdefektes war. Das GAL4/UAS System wurde benutzt, um die S6KII Expression zeitlich und räumlich zu steuern. Es wurde gezeigt, dass die Expression der Kinase während des adulten Stadiums für die Rettung hinreichend war. Dieser Befund schließt eine Entwicklungsstörung als Ursache für den mutanten Phänotyp aus. Außerdem zeigte die gezielte räumliche Rettung von S6KII die Notwendigkeit der Pilzkörper und schloss Strukturen wie das mediane Bündel, die Antennalloben und den Zentralkomplex aus. Dieses Muster ist dem vorher mit der rutabaga Mutation identifizierten sehr ähnlich (Zars et al., 2000). Experimente mit der Doppelmutante rut, ign58-1 deuten an, dass rutabaga und S6KII im gleichen Signalweg aktiv sind. Vorhergehende Studien hatten bereits gezeigt, dass die unterschiedlichen Ergebnisse bei operanter und klassischer Konditionierung auf verschiedenen Rollen für S6KII in den zwei Arten des Lernens hindeuten (Bertolucci, 2002; Putz, 2002). Diese Schlussfolgerung wurde durch den mutanten Phänotyp der transgenen Linien in der Positionskonditionierung und ihr wildtypisches Verhalten in der klassischen Konditionierung zusätzlich bekräftigt. Eine neue Art von Lern-Experiment, genannt „Idle Experiment“, wurde entworfen. Es basiert auf der Konditionierung der Laufaktivität, stellt eine operante Aufgabenstellung dar und überwindet einige der Limitationen des „Standard“ Heat-Box Experimentes. Die neue Art des Idle Experimentes erlaubt es, „gelernte Hilflosigkeit“ in Fliegen zu erforschen, dabei zeigte sich eine erstaunliche Ähnlichkeit zu den Vorgängen in komplizierteren Organismen wie Ratten, Mäusen oder Menschen. Gelernte Hilflosigkeit in der Taufliege wurde nur in den Weibchen beobachtet und wird von Antidepressiva beeinflusst. KW - Klassische Konditionierung KW - Instrumentelle Konditionierung KW - Konditionierung KW - Operante Konditionierung KW - Lernen KW - Räumliches Gedächtnis KW - Assoziatives Gedächtnis KW - Gedächtnis KW - MAP-Kinase KW - Drosophila KW - Taufliege KW - Gelernte Hilflosigkeit KW - CREB KW - S6KII KW - p90RSK KW - RSK KW - p90 ribosomal S6 kinase KW - ribosomal S6 kinase II KW - operant conditioning KW - classical conditioning KW - associative learning KW - learned helplessness Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33984 ER - TY - THES A1 - Jenuwein, Meta T1 - Signaltransduktion im Gehirn SIV-infizierter Rhesusaffen T1 - Signal transduction in brains of SIV-infected macaques N2 - Obwohl das Krankheitsbild der HIV-Demenz schon seit über 20 Jahren bekannt ist, sind die Abläufe und Mechanismen, die zur Ausbildung neuropsychiatrischer Defizite führen, noch immer ungeklärt. Um die Ätiologie und Pathogenese der HIV-Demenz verstehen zu können, sind Untersuchungen in einer möglichst frühen, noch asymptomatischen Phase der HIV-Infektion notwendig. Deswegen bietet das SIV/Rhesusaffen-Modell beste Voraussetzungen um die Entstehung der HIV-Demenz genauer zu untersuchen. Es gibt einige Hinweise, dass viele klinische Zeichen der HIV-Demenz mit Veränderungen im dopaminergen System des ZNS einhergehen. In diesem Zusammenhang wurden in der vorliegenden Arbeit die Signaltransduktion von Dopamin in den dopaminergen Arealen des Gehirns SIV-infizierter Rhesusaffen untersucht. Die Konzentration des cAMP und die Expression des CREB Proteins erwiesen sich als geeignete Untersuchungsparameter. cAMP dient unter anderem dem Neurotransmitter Dopamin in der postsynaptischen Zelle als sogenannter „second messenger“. CREB ist in der darauffolgenden Transduktionskaskade ein Protein, das die Expression zahlreicher Gene beeinflusst. Die Daten wurden für die Hirnregionen Nucleus accumbens, Corpus amygdaloideum und Putamen erhoben. Nucleus accumbens und Corpus amygdaloideum sind Teile des limbischen Systems, die auch in der Pathophysiologie psychiatrischer Störungen und Suchterkrankungen eine Rolle spielen. Das Putamen ist Teil des Corpus striatum, welches extrapyramidale Bewegungsabläufe beeinflusst. Neben dem Vergleich zwischen Kontrolltieren und SIV-infizierten Rhesusaffen wurden auch die Veränderungen der cAMP bzw. CREB Konzentration bei SIV-infizierten und uninfizierten jeweils mit dopaminergen Medikamenten behandelten Rhesusaffen erfasst. Hierfür wurden einige Tiere mit Selegilin bzw. L-DOPA behandelt. Die Ergebnisse lassen sich wie folgt zusammenfassen: Die Konzentration des gesamt CREB war bei SIV-infizierten Tieren in allen untersuchten Hirnregionen reduziert. Die intrazelluläre Konzentration von cAMP war im Nucleus accumbens sowie im Putamen verringert, blieb im Corpus amygdaloideum SIV-infizierter Rhesusaffen jedoch unverändert. Im Nucleus accumbens stieg der CREB Spiegel bei den SIV-infizierten mit Selegilin behandelten Tieren tendenziell an, die cAMP Konzentration blieb jedoch nahezu unverändert. Im Putamen rief die Behandlung SIV-infizierter Tiere mit Selegilin und L-DOPA eine Erhöhung der CREB Expression hervor. Der cAMP Spiegel im Putamen SIV-infizierter Rhesusaffen wurde von der dopaminergen Medikation nicht beeinflusst. Die mit dopaminergen Medikamenten behandelten Kontrolltiere zeigten im Nucleus accumbens und im Putamen keine wesentlichen Veränderungen, weder in der cAMP Konzentration, noch in der CREB Expression. Im Corpus amygdaloideum blieb die cAMP Konzentration durch die Behandlung SIV-infizierter Rhesusaffen mit Selegilin bzw. L-DOPA unverändert. Die cAMP Konzentration fiel bei den mit Selegilin behandelten Kontrolltieren signifikant ab, stieg jedoch bei den mit L-DOPA behandelten Kontrolltieren an. Der CREB Spiegel hingegen zeigte bei den Kontrolltieren sowie auch bei den SIV-infizierten Tieren mit dopaminerger Behandlung im Corpus amygdaloideum keine signifikanten Veränderungen. Einige Versuchstiere wurden erst im AIDS-Stadium der Infektion getötet. Diese Tiere zeigten verglichen mit den SIV-infizierten Tieren, die bereits im asymptomatischen Stadium der Erkrankung getötet wurden, im Nucleus accumbens, im Corpus amygdaloideum und auch im Putamen bezüglich der cAMP Konzentration keinen signifikanten Unterschied. Diese Ähnlichkeit weist auf pathologische Veränderungen des ZNS hin, die schon im frühen Stadium der Infektion entstehen und möglicherweise den Krankheitsverlauf entscheidend beeinflussen. Die Analyse der Ergebnisse zeigt, dass das Immundefizienzvirus in manchen Hirnregionen erwiesenermaßen Veränderungen der dopaminergen Signaltransduktion hervorruft, die sich allerdings nicht in allen Hirnregionen gleich gestalten. Dies könnte auf die unterschiedliche Verteilung der Dopaminrezeptorgruppen in den untersuchten Hirnregionen zurückzuführen sein. Vor allem das Absinken der CREB Konzentration in Regionen des limbischen Systems und im Putamen in SIV-infizierten Rhesusaffen, weist darauf hin, dass die neuropsychiatrischen Veränderungen im Rahmen der HIV-Infektion einen biologischen Hintergrund haben. N2 - Although HIV-dementia has been known for more than 20 years, mechanisms and processes that lead to the development of neuropsychiatric deficits remain still unclear. In order to increase our understanding on the pathogenesis of HIV-dementia, investigations in the early asymptomatic stage of HIV-infection are necessary. The SIV/macaque model is the most appropriate animal model to expand our knowledge about the development of HIV-dementia. There is a great body of evidence that many clinical signs of HIV-dementia are associated with changes in the dopaminergic system of the central nervous system. In the present study, parts of the signal transduction of dopamine, such as cAMP and CREB, were analysed in brains of SIV-infected macaques. cAMP is, among others, a postsynaptic second messenger of dopamine. In the activated transduction chain, CREB is a protein that influences the expression of numerous genes. Measurements were performed in dopaminergic brain regions involving nucleus accumbens, corpus amygdaloideum and putamen. Nucleus accumbens and corpus amygdaloideum are limbic areas and are involved in the pathophysiology of psychiatric disorders and substance abuse. The putamen is part of the corpus striatum, which exerts influence on extrapyramidal motion sequences. cAMP concentrations and CREB expression were measured in uninfected and SIV-infected monkeys, some of which were treated with dopaminergic substances such as L-DOPA and selegiline. The results can be summarized as follows: The concentration of total CREB was reduced in SIV-infected macaques in all investigated brain regions. Intracellular cAMP was reduced in nucleus accumbens and in putamen, but remained unchanged in corpus amygdaloideum. In nucleus accumbens, CREB levels tended to rise in SIV-infected/selegiline-treated macaques, whereas cAMP content did not significantly change through treatment. In putamen dopaminergic treatment of SIV-infected macaques (with L-DOPA or selegiline) resulted in increased expression of CREB. cAMP concentrations following dopaminergic medication remained stable in the putamen of SIV-infected macaques. In uninfected/treated animals, no remarkable changes, in cAMP concentration or in CREB expression were apparent in the putamen. cAMP concentrations remained unchanged in corpus amygdaloideum of SIV-infected monkeys that had received dopaminergic treatment. cAMP concentrations decreased significantly in control animals that were treated with selegiline, but rose in the animals that were treated with L-DOPA. In corpus amygdaloideum CREB expression did not differ significantly between control animals and SIV-infected macaques both treated with dopaminergic medication. Some animals were sacrificed in the AIDS stage of infection. Those animals did not show a significant difference in cAMP concentration compared to SIV-infected macaques that were sacrificed in the early asymptomatic stage of infection; neither in corpus amygdaloideum, nor in nucleus accumbens or in putamen. These data indicate that pathologic changes may arise already in the early stage of infection and may have a decisive influence on disease progression. The obtained results suggest that immunodeficiency virus infection causes an altered dopaminergic signal transduction in some brain regions, although these changes are not the same in every brain structure. These findings may result because of the difference in distribution of dopaminergic receptor groups in the investigated brain areas. The decrease of CREB expression in the brain regions of the limbic system and in the putamen of SIV-infected macaques provides evidence that neuropsychiatric changes associated with HIV-infection may have a biological background. KW - HIV-Demenz KW - Dopamin KW - cAMP KW - CREB KW - SIV KW - HIV-dementia KW - dopamin KW - cAMP KW - CREB KW - SIV Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12136 ER -