TY - THES A1 - Beck, Christoph T1 - Zirkulationsdynamische Variabilität im Bereich Nordatlantik-Europa seit 1780 N2 - In der vorliegenden Studie wurden auf der Basis langer mitteleuropäischer Zeitreihen der Temperatur und des Niederschlags sowie rekonstruierter monatlicher Bodenluftdruckfelder für den Bereich Nordatlantik-Europa Untersuchungen zur langperiodischen klimatischen und zirkulationsdynamischen Variabilität im Zeitraum 1780-1995 durchgeführt. Der im Rahmen dieser Arbeit betrachtete Zeitraum umfaßt damit neben dem 20. Jahrhundert, das durch eine zunehmende menschliche Einflußnahme auf das Globalklima gekennzeichnet ist, eine historische, bezüglich ihrer Klimacharakteristik anthropogen nahezu unbeeinflußte Periode. Vor dem Hintergrund der zeitlichen Limitierung bisheriger zirkulationsdynamischer und synoptisch-klimatologischer Forschungsarbeiten auf die letzten etwa 100 Jahre wurden folgende zentrale Zielsetzungen formuliert: - Erfassung und Darstellung der räumlich differenzierten, niederfrequenten thermischen und hygrischen Variabilität in Mitteleuropa seit 1780, auf einer möglichst umfassenden und hinsichtlich ihres klimatologischen Aussagewertes optimierten Datenbasis. - Untersuchung der korrespondierenden nordatlantisch-europäischen Zirkulationsveränderungen und ihrer Relevanz für die zeitlichen Variationen von Temperatur und Niederschlag in Mitteleuropa. - Analyse der zeitlichen Variabilität der Beziehungen zwischen großräumiger atmosphärischer Zirkulation und regionalem Klima auf multidekadischer Zeitskala. Ein erster wesentlicher Arbeitsschritt umfaßte die Überprüfung der Homogenität der verfügbaren - im Rahmen der Arbeit teilweise wesentlich erweiterten - mitteleuropäischen Temperatur- und Niederschlagszeitreihen (72 bzw. 62 Stationsreihen) mittels verschiedener absoluter und relativer Homogenitätstests. Für einen beträchtlichen Teil der Zeitreihen wurden signifikante Inhomogenitäten diagnostiziert, die unter Verwendung homogener Referenzreihen homogenisiert werden konnten. Um die angestrebte räumlich differenzierte Analyse der klimatischen Veränderungen seit 1780 zu ermöglichen, erfolgten - basierend auf nichthierarchischen Clusteranalysen der Matrizen der paarweisen Korrelationen zwischen allen Temperatur- bzw. Niederschlagsreihen - objektive Regionalisierungen von Temperatur und Niederschlag. Für die resultierenden acht thermischen und neun hygrischen Regionen Mitteleuropas wurden regionale Temperatur- und Niederschlagsreihen berechnet, die bezüglich ihrer langperiodischen Variabilität analysiert wurden. Im Vordergrund standen dabei die Ermittlung der zeitlichen Abfolge thermischer bzw. hygrischer Anomaliephasen seit 1780 sowie der klimatische Vergleich der sog. frühinstrumentellen Periode (1780-1860) mit einer modernen Referenzperiode (1915-1995). Als wesentliches Ergebnis konnte eine gegenüber dem Zeitraum 1780-1860 verminderte kontinentale Prägung des mitteleuropäischen Klimas - mit wärmeren, feuchteren Wintern und kühleren Sommern - in diesem Jahrhundert (1915-1995) festgestellt werden. Als Grundlage für die Analyse der korrespondierenden zirkulationsdynamischen Variabilität wurde eine automatische - hauptkomponenten- und clusteranalytische - Klassifikation rekonstruierter monatlicher nordatlantisch-europäischer Bodenluftdruckfelder erarbeitet. Ein zweiter automatischer Klassifikationsalgorithmus wurde in Anlehnung an die Großwettertypenklassifikation nach Hess/Brezowski unter besonderer Berücksichtigung der Strömungsverhältnisse über Europa entwickelt. Die aus den Klassifikationsverfahren resultierenden Druckmusterklassen repräsentieren wesentliche Zustandsformen der atmosphärischen Zirkulation im nordatlantisch-europäischen Bereich. Basierend auf der Untersuchung der zeitlichen Veränderungen der Auftrittshäufigkeiten der verschiedenen Druckmusterklassen konnten die folgenden wesentlichen Aussagen zur zirkulationsdynamischen Variabilität seit 1780 formuliert werden: - Die zeitliche Entwicklung der Auftrittshäufigkeiten der einzelnen Zirkulationstypen und der daraus aggregierten Zirkulationsformen - zonal, gemischt, meridional - zeigt keine deutlichen langzeitlichen Trends, sondern ist von Schwankungen unterschiedlicher Periodenlänge und Amplitude gekennzeichnet. - Einige rezent zu beobachtende Veränderungstendenzen (beispielsweise die Zunahme der winterlichen Zonalzirkulation seit den 1970er Jahren) erscheinen bei Betrachtung des 216-jährigen Gesamtzeitraums als nicht außergewöhnliche Ereignisse im Rahmen langperiodischer (dekadischer bis säkularer) zirkulationsdynamischer Variabilität. Aus dem direkten zirkulationsdynamischen Vergleich der beiden Zeiträume 1780-1860 und 1915-1995 ergeben sich folgende saisonal differenzierte Unterschiede: - In den Wintermonaten Dezember und Januar sind in diesem Jahrhundert deutlich größere Auftrittshäufigkeiten von Zirkulationstypen mit südwestlicher bis nordwestlicher Richtungsorientierung des Isobarenverlaufs bei gleichzeitig reduzierten Häufigkeiten winterkalter meridionaler Druckmuster festzustellen. Zeitliche Veränderungen umgekehrten Vorzeichens manifestieren sich hingegen im Februar. - Bei intrasaisonal variierenden Befunden im Frühjahr überwiegt bei saisonaler Betrachtung eine Zunahme meridionaler Strömungskonfigurationen auf Kosten der zonalen und vor allem der gemischten Zirkulationsform. - Im Sommer dominiert eine Abnahme der zonalen Zirkulationsform zugunsten meridionaler Zirkulationstypen, die eine Anströmung aus dem nördlichen Richtungssektor implizieren. - Für die Herbstmonate September mit November ergeben sich in diesem Jahrhundert vor allem gesteigerte Häufigkeiten von Strömungskonfigurationen, die die Heranführung von Luftmassen aus westlichen bis nordwestlichen Richtungen bedingen. - Eine möglicherweise grundlegende Modifikation der nordatlantisch-europäischen Zirkulation in diesem Jahrhundert deutet sich bezüglich des häufigeren Wechsels zwischen stark zonal bzw. meridional geprägten Phasen - vor allem im Winter - an. Mittels eines einfachen empirischen Modellansatzes wurde anschließend analysiert, inwieweit sich die diagnostizierten klimatischen Unterschiede zwischen den beiden Zeiträumen 1780-1860 und 1915-1995 aus den festgestellten zeitlichen Veränderungen der Zirkulationsstrukturen ergeben. Es wurde deutlich, daß nur ein Teil der Temperatur- und Niederschlagsveränderungen zwischen historischem Zeitraum und diesem Jahrhundert durch differierende Auftrittshäufigkeiten witterungsklimatisch homogener Zirkulationstypen erklärt werden kann. Ein beträchtlicher Anteil der klimatischen Unterschiedlichkeiten der beiden Vergleichszeiträume ist offensichtlich auf zeitlich variierende Witterungscharakteristika der einzelnen Strömungskonfigurationen („within-type changes“ - zirkulationstypinterne Veränderungen) zurückzuführen. Das Ausmaß der typinternen klimatischen Modifikationen konnte durch die Berechnung der in den beiden Vergleichszeiträumen ausgebildeten typspezifischen mittleren Temperatur- und Niederschlagsverhältnisse quantifiziert werden. Die Fraktionierung der zirkulationstypspezifischen Temperatur- bzw. Niederschlagsänderungsbeträge in einen durch variierende Auftrittshäufigkeiten bedingten sowie einen auf typinterne Veränderungen zurückzuführenden Anteil belegt, daß in allen Jahreszeiten internen klimatischen Modifikationen der Zirkulationstypen mit südwestlicher bis nordwestlicher Isobarenverlaufsrichtung eine gewichtige Rolle bei der Generierung zeitlicher Unterschiede der mitteleuropäischen Temperatur- und Niederschlagscharakteristik zukommt. Als Ursache der zirkulationstypinternen Veränderungen konnten zum einen unterschiedliche Ausgestaltungen der typspezifischen Druckmuster im historischen und im rezenten Zeitraum identifiziert werden (beispielsweise zeitlich variierende Druckgradienten bei generell übereinstimmenden Strömungskonfigurationen), zum anderen deuten sich auf der täglichen Zeitskala Veränderungen der Persistenzen einzelner Zirkulationstypen an. Diese zirkulationsdynamischen Modifikationen stellen aber nicht in allen Fällen einen hinreichenden Erklärungsansatz für die diagnostizierten „within-type changes“ dar, so daß zusätzlich andere verursachende Faktorenkomplexe in Betracht gezogen werden müssen (beispielsweise modifizierte thermische und hygrische Luftmasseneigenschaften aufgrund veränderter Energieflüsse zwischen Ozean und Atmosphäre). Mit Blick auf diese Resultate wurden die Beziehungen zwischen großräumiger Zirkulation und regionalem bodennahem Klima mittels kanonischer Korrelationsanalysen monatlicher Bodenluftdruckfelder und regionaler mitteleuropäischer Temperatur- und Niederschlagszeitreihen detaillierter hinsichtlich ihrer zeitlichen Variabilität untersucht. Die wesentlichen Ergebnisse lassen sich wie folgt zusammenfassen: - In allen Jahreszeiten zeigen sich im Zeitraum 1780-1995 ausgeprägte zeitliche Schwankungen des statistisch beschreibbaren Zusammenhangs zwischen großräumiger atmosphärischer Zirkulation und regionalem Klima (Temperatur und Niederschlag in Mitteleuropa). - Ein Vergleich der beiden Perioden 1780-1860 und 1915-1995 hinsichtlich der Kopplungsmechanismen zwischen Bodenluftdruckverteilung und Klima ergibt teilweise hochsignifikante Unterschiede. - Die Modellierung von Temperatur und Niederschlag in Mitteleuropa aus monatlichen Druckfeldern jeweils einem der Zeitabschnitte 1780-1860 und 1915-1995 unter Verwendung der im jeweils anderen Zeitraum etablierten statistischen Zusammenhänge erbringt nur in einem Fall (Januartemperaturen) befriedigende Übereinstimmungen zwischen den modellierten und beobachteten Klimaverhältnissen. Die in dieser Arbeit vorgestellten Untersuchungsergebnisse lassen die Schlußfolgerung zu, daß sich die im 20. Jahrhundert zu verzeichnenden Zirkulationsveränderungen im nordatlantisch-europäischen Sektor bislang noch in das Spektrum natürlicher zirkulationsdynamischer Variabilität einfügen. Diese Aussage stellt aber weder die wahrscheinliche Mitwirkung des anthropogen verstärkten Treibhauseffekts an den in diesem Jahrhundert beobachteten Zirkulationsdynamischen Entwicklungen im euro-atlantischen Bereich in Frage, noch kann sie als Argument für die Aufschiebung notwendiger klimapolitischer Entscheidungen oder für die verzögerte Entwicklung und Umsetzung von Handlungsstrategien zur wirksamen Reduzierung klimawirksamer Treibhausgasemissionen aufgefaßt werden. T3 - Würzburger Geographische Arbeiten - 95 KW - Europa KW - Allgemeine atmosphärische Zirkulation KW - Klimavariation KW - Atlantischer Ozean KW - Geschichte 1780-2000 KW - Atlantischer Ozean Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238451 ER - TY - THES A1 - Steger, Christian T1 - Simulation ausgewählter Zeitscheiben des Paläoklimas in Asien mit einem hochaufgelösten Regionalmodell T1 - Simulation of selected timeslices of the paleoclimate in Asia with a high-resolution regional climate model N2 - Das Tibetplateau (TP) ist das höchste Gebirgsplateau der Erde und bildete sich im Verlauf der letzten 50 Millionen Jahre. Durch seine Ausmaße veränderte das TP nicht nur das Klima im heutigen Asien, sondern bewirkte Veränderungen weltweit. Heute stellt das TP einen Hotspot des Klimawandels dar und ist als Quellgebiet vieler großer Flüsse in Asien für die Wasserversorgung von Milliarden von Menschen von zentraler Bedeutung. Vor diesem Hintergrund ist es wichtig, die Prozesse, die das Klima in der Region steuern, besser zu verstehen und die Variabilität des Klimas auf unterschiedlichen Zeitskalen abschätzen zu können. Grundlegendes Ziel der vorliegenden Arbeit ist es, räumlich hochaufgelöste quantitative Informationen über die Veränderung der klimatischen Verhältnisse in Asien während der Bildungsphase des TP und unter warm- und kaltzeitlichen Randbedingungen zur Verfügung zu stellen und dadurch eine Verbindung zwischen den verschiedenen Zeitskalen herzustellen. Hierfür werden das heutige Klima und das Paläoklima der Region mit Hilfe von Klimamodellen simuliert. Da frühere Studien zeigen konnten, dass die Ergebnisse von hochaufgelösten Modellen besser mit Paläoklimarekonstruktionen übereinstimmen, als die von vergleichsweise niedrig aufgelösten Globalmodellen, erfolgt ein dynamisches Downscaling des globalen Klimamodells ECHAM5 mit dem regionalen Klimamodell REMO. Die Heraushebung des TP wird durch eine Serie von fünf Simulationen (Topogra- phieexperimente) approximiert, in denen die Höhe des TP in 25%-Schritten von 0% bis 100% der heutigen Höhe verändert wird. Die Schwankungen des Klimas im spä- ten Quartär sind durch Simulationen für das mittlere Holozän und den Hochstand der letzten Vereisung, das Last-Glacial-Maximum, repräsentiert (Quartärexperi- mente). In den Quartärexperimenten wurden die Treibhausgaskonzentrationen, Orbitalparameter, Landbedeckung und verschiedene Vegetationsparameter an die Bedingungen der jeweiligen Zeitscheibe angepasst. Die Auswertung der Simulati- onsergebnisse konzentriert sich auf jährliche und jahreszeitliche Veränderungen der bodennahen Temperatur und des Niederschlags. Außerdem werden die sich erge- benden Änderungen in der Intensität des indischen Monsuns anhand verschiedener Monsunindizes analysiert. Für das TP und die sich unmittelbar anschließenden Ge- biete wird zusätzlich eine Clusteranalyse durchgeführt, um die dort vorkommenden regionalen Klimatypen identifizieren und charakterisieren zu können. In den Topographieexperimenten zeigt sich, dass die 2m-Temperatur im Bereich des TP im Jahresmittel mit abnehmender Höhe des Plateaus um bis zu 30◦C zunimmt, während es in den übrigen Teilen des Modellgebiets nahezu überall kälter wird. Die Jahressumme des Niederschlags nimmt mit abnehmender Höhe des TP westlich und nördlich davon zu. Im Bereich des TP sowie südlich und östlich davon gehen die Niederschläge zurück. Die starke Niederschlagszunahme nördlich des TP kann durch die Ausbildung eines Höhentrogs statt eines Höhenrückens in diesem Bereich erklärt werden. Das grundsätzliche räumliche Muster der Veränderungen besteht dabei bereits bei einer Plateauhöhe von 75% des Ausgangswertes und ändert sich bei weiterer Verringerung der Höhe nicht wesentlich. Lediglich der Betrag der Veränderungen nimmt zu. Dies gilt für die 2m-Temperatur und den Niederschlag und sowohl im Jahresmittel als auch für die einzelnen Jahreszeiten. Bezüglich der Intensität des indischen Sommermonsuns zeigt sich, dass zwischen 25% und 75% der heutigen Höhe des TP die stärkste Intensivierung stattfindet. Eine mit heute vergleichbare Monsunintensität tritt erst auf, wenn das TP die Hälfte seiner jetzigen Höhe erreicht hat. Im mittleren Holozän ist es im Jahresmittel in den meisten Teilen des Modellge- biets kälter und feuchter als heute. Die Unterschiede sind jedoch größtenteils gering und nicht signifikant. Hinsichtlich der Temperatur zeigen die Modelldaten nur vereinzelt eine gute Übereinstimmung mit den rekonstruierten Werten. Allerdings weisen die Rekonstruktionen eine hohe räumliche Variabilität auf, wodurch die in diesem Datensatz vorhandenen Unsicherheiten widergespiegelt werden. Hinsicht- lich des Niederschlags ist die Übereinstimmung besser. Hier deuten sowohl die simulierten als auch die rekonstruierten Daten auf feuchtere Bedingungen hin. In der Simulation für das Last-Glacial-Maximum liegen die Temperaturen überall im Modellgebiet im Jahresmittel und in allen Jahreszeiten um bis zu 8◦C unter den heutigen Werten. Es besteht eine gute Übereinstimmung mit den rekonstruierten Temperaturwerten für diese Zeitscheibe. Zu einer signifikanten Abnahme der jährlichen Niederschlagsmenge kommt es westlich und nordwestlich des TP, in Indien, Südostasien und entlang der Ostküste Chinas. Für die Bereiche, für die Niederschlagsrekonstruktionen verfügbar sind, stimmen die Modellergebnisse gut mit diesen überein. Zu einer signifikanten Niederschlagszunahme kommt es nur zwischen der Nordküste des Golfs von Bengalen und dem Himalaya, wobei dies möglicherweise ein Modellartefakt darstellt. Hinsichtlich der Monsunintensität bestehen große Unterschiede zwischen den Indizes. Während der Extended Indian Monsoon Rainfall Index eine starke Ab- schwächung des indischen Sommermonsuns anzeigt, ist der Wert des Webster and Yang Monsoon Index verglichen mit heute nahezu unverändert. Ein Vergleich der Monsunintensität in den Topographie- und den Quartärexperimenten macht deut- lich, dass der indische Monsun durch den Wechsel von warm- und kaltzeitlichen Randbedingungen mindestens so stark beeinflusst wird wie durch die Hebung des TP. N2 - The Tibetan Plateau (TP) is the world’s most elevated highland which was built over the past 50 million years. With its extent, the TP did not only influence the climate in Asia, but also caused global changes. Today, the TP represents a climate change hot spot and is, as the source region of many large rivers in Asia, crucial for the water supply of billions of people. Considering this background, it is important to obtain a better understanding of the processes that control the climate in the region and to estimate the climate variability on different time scales. The basic goal of this study is to provide spatial highly resolved quantitative information about the changes in the climatic conditions in Asia during the uplift of the TP and during periods with warmer and colder boundary conditions and thus to put these different timescales in relation. Therefore, the modern climate and the paleoclimate of the region are being simulated with climate models. The global climate model ECHAM5 is dynamically downscaled with the regional climate model REMO, because previous studies have shown, that the results of models with higher resolution are more consistent with paleoclimate reconstructions than the results of models with lower resolution. The uplift of the TP is approximated by a series of five simulations (topography experiments) in which the elevation of the TP is varied in steps of 25% from 0% to 100% of its present day height. The late Quaternary climate variations are represented by two simulations with boundary conditions for the Mid-Holocene and the Last-Glacial-Maximum (Quaternary experiments). For the Quaternary experiments, the greenhouse gas concentration, orbital parameters, land cover and some vegetation parameters have been adopted for the particular time slice. The evaluation of the simulations’ results focusses on annual and seasonal changes of the near surface temperature and precipitation. Variations in the strength of the Indian monsoon are analyzed by means of different monsoon indices. In order to identify and characterize the regional climate types there, a cluster analysis is conducted for the TP and adjacent regions. The topography experiments show that the annual mean 2m-temperature drops by up to 30◦C in the region of the TP when the height of the plateau is reduced while it becomes colder nearly everywhere else in the model domain. The annual precipitation amount is reduced in the west and north of the TP when its height is reduced. The immense precipitation increase to the north of the TP can be explained by the formation of a trough instead of a ridge in the mid-troposphere of this region. The general spatial pattern of the changes already persists when the height of the TP is reduced to 75% of the present day value and it does not change fundamentally when the height is reduced further. This pertains for the 2m-temperature, the precipitation and for the annual as well as the seasonal means. The analysis of the intensity of the Indian Summer Monsoon shows that the strongest intensification appears between 25% to 75% of the TP’s present day elevation. Half of the current elevation is necessary to get a monsoon intensity comparable to the one of today. In the Mid-Holocene, it is on average colder and more humid in most parts of the model domain compared to present day. But the differences are mostly small and not significant. Concerning the temperature, the model data coincides only sporadically with reconstructed values. However, the reconstructions show great spatial variability, which reflects the uncertainties that are present in this data set. Regarding precipitation, the simulated data matches the reconstructions better. Both the simulated and the reconstructed data point towards wetter conditions. Compared to present day values, the simulation of the Last-Glacial-Maximum shows up to 8◦C lower annual and seasonal mean temperatures everywhere in the model domain compared to present day values. The results are in good conformity with reconstructed temperature values for this time slice. A significant reduction of the annual precipitation amount appears in the west and north of the TP, in India, Southeast Asia and along the east coast of China. Where precipitation reconstructions are available, the model results show good accordance with these values. A significant increase in precipitation appears only between the northern coast of the Bay of Bengal and the Himalayas, but this potentially represents a model artifact. There are big differences between the indices in terms of the monsoon intensity. The Extended Indian Monsoon Rainfall Index shows a strong reduction of the Indian Summer Monsoon,whereas the value of the Webster and Yang Monsoon Index remains nearly unchanged compared to the present day value. A comparison of the monsoon intensity in the topography and the quaternary experiments reveals that the change in boundary conditions between warm and cold intervals affects the Indian monsoon at least as much as the uplift of the TP. KW - Paläoklima KW - Asien KW - Monsun KW - Paläoklimamodellierung KW - Regionalmodell KW - Klimaänderung KW - Tibet KW - Klimavariation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122606 ER -