TY - THES A1 - Horntrich, Claudia T1 - Die Funktion von Membranlipidnanodomänen für Signaltransduktionsprozesse in Pflanzen T1 - Analysis of signalling processes in Lipid Membrane domains N2 - In vielen tierischen Zellen und in Hefe wurden Membrandomänen als Plattformen für die Etablierung von Signalkomplexen bereits gut beschrieben (Foster et al., 2003) und entsprechend ihrer Resistenz gegenüber nicht-ionischen Detergenzien charakterisiert (Shogomori et al., 2003). Die Behandlung von Membranen mit solchen Detergenzien kann zu Artefakten führen und die Anwesenheit eines Proteins in diesen so genannten „DRMs“ bedeutet noch nicht, dass es auch in nativen Membrandomänen lokalisiert ist. Allerdings muss man sich, mangels besserer Methoden zur Aufreinigung von Membrandomänen, heute noch der Methode der DRM-Aufreinigung durch Detergenzien bedienen, um eine erste Vorstellung von der Proteinzusammensetzung dieser bestimmten Membranbereiche zu erhalten. Mittels Sterolreduktion der DRMs durch die Behandlung der isolierten Membranfraktionen mit MCD und anschließender HPLC-ESI-Massenspektrometrie, konnten 80 Proteine identifiziert werden, die somit als potentiell in Membrandomänen lokalisiert gelten können. Unter diesen befanden sich die beiden Arabidopsis-Remorine AtRem1.2 und AtRem1.3, die Ca2+-abhängige Proteinkinase CPK21 und die Proteinphosphatase 2C ABI1. Dieses Phosphatase-Kinase-Paar reguliert den membranständigen, im Mesophyll exprimierten, Anionenkanal SLAH3 in ABA-abhängiger Weise (Geiger et al., 2011). Mit Hilfe biochemischer, massenspektrometrischer und mikroskopischer Methoden konnte gezeigt werden, dass die Phosphatase ABI1 in Abwesenheit von ABA die Interaktion zwischen der Kinase CPK21 und dem Anionenkanal SLAH3 unterbindet. Dies geschieht indem SLAH3 und CPK21 aus den Membrandomänen in die umgebenden Membranbereiche verlagert werden und somit eine phosphorylierungsabhängige Aktivierung des Anionenkanals verhindert wird (Demir et al., 2013). Unter den in Nanodomänen lokalisiert Proteinen, konnte auch die NADPH-Oxidase AtrbohD als schwach sterolabhängig identifiziert werden. Diese zeigte im Gegensatz zu der homologen Oxidase AtrbohF, nach transienter Koexpression in Arabidopsis-Epidermiszellen zwar eine Lokalisation in distinkten Membrandomänen, aber keine Kolokalisation mit dem zuvor etablierten Membrandomänenmarker AtRem1.3 (Demir et al., 2013). Dieses Ergebnis impliziert, dass es verschiedene Arten von Membrandomänen geben könnte und dass die beiden Oxidasen (zumindest zeitweise) in unterschiedlichen Membrankompartimenten lokalisiert und dadurch womöglich auch unterschiedlich reguliert sein können. Nach Koexpression der Oxidase AtrbohD mit den weiteren 12 der insgesamt 16 Arabidopsis-Remorinen, konnte eine Kolokalisation der Oxidase mit AtRem1.4 bestätigt werden. Das Remorin AtRem1.4 zeigt in weiteren Versuchen nicht nur eine deutliche Lokalisierung in anderen sterolreichen Membrandomänen als AtRem1.3, es zeigt auch eine eindeutige laterale Immobilität und kann somit als ein Marker für Membrandomänen etabliert werden. Somit bestätigt sich die Annahme, dass es auch in Pflanzen unterschiedliche Arten von Membrankompartimenten gibt. Zu diesem Zeitpunkt war noch kein, die Funktion der Oxidase regulierender Interaktionspartner von AtrbohD bekannt, um die Frage des Zusammenhangs zwischen Lokalisation und Funktion der Oxidase beantworten zu können. Mit Hilfe verschiedener mikroskopischer Techniken (BiFC, SE-FRET, AB-FRET) zur Untersuchung von Protein-Protein-Interaktionen, konnte aus einer Auswahl von fünf Mesophyll-lokalisierten und Ca2+-unabhängigen Snrk2-Kinasen, zwei potentielle Interaktionspartner identifiziert werden. Genau wie mit der homologen Oxidase AtrbohF (Sirichandra et al., 2007), interagiert die ABA-abhängige Kinase OST1/Snrk2.6 auch mit AtrbohD. Bei dem zweiten potentiellen Interaktionspartner handelt es sich um Snrk2.7. Die Behandlung der transfizierten und in den Interaktionsmessungen eingesetzten Zellen mit der sterolreduzierenden Reagenz MCD resultierte in einem signifikanten Anstieg der zuvor gemessenen Interaktionseffizienzen (EFRET) aller fünf ausgewählten Snrk2-Kinasen mit AtrbohD. Eine Interaktion zwischen zwei Proteinen muss nicht zwingend bedeuten, dass sie eine funktionelle Einheit in einem Signalweg darstellen. Aus diesem Grund wurde der Einfluss der identifizierten potentiellen Interaktionspartner auf die ROS-Produktionsaktivität der NADPH-Oxidase AtrbohD untersucht. Es zeigt sich, dass Snrk2.7 die ROS-Produktion durch die Oxidase auf ein vergleichbar hohes Niveau steigern kann, wie die zu diesem Zeitpunkt als Interaktionspartner der Oxidase AtrbohD identifizierte Ca2+-abhängige Kinase CPK5 (Dubiella et al., 2013). Die Kinase Snrk2.7 interagiert also nicht nur mit AtrbohD, sondern kann die Oxidase auch phosphorylieren (wahrscheinlich an einer der beiden für die Phosphorylierung von AtrbohD als essentiell beschriebenen Positionen S343 oder S347 (Nühse et al., 2007) und nicht an der untersuchten Position S39) und somit aktivieren. Dem hingegen zeigt OST1, trotz einer zuvor bestätigten Interaktion mit AtrbohD, nicht die Fähigkeit diese Oxidase auch aktivieren zu können. Die Snrk2.7-vermittelte Aktivität von AtrbohD ist ebenfalls deutlich durch eine Behandlung der transfizierten Zellen mit MCD induzierbar. Die NADPH-Oxidase AtrbohD wird also in Abhängigkeit ihrer Lokalisierung in spezifischen Membrandomänen reguliert. Wenn die zwei essentiellen Phosphorylierungsstellen durch eine Punktmutation ausgeschaltet werden und die Oxidase nicht mehr als Antwort auf Pathogene aktiviert werden kann, lokalisiert diese nicht mehr in den AtRem1.4-markierten Membrandomänen. Auch zeigt sich, dass die Aktivität der Oxidase, induziert durch eine Interaktion mit der nicht in Membrandomänen lokalisierten Snrk2-Kinase Snrk2.7, gesteigert werden kann, wenn durch MCD die sterolreichen Membrandomänen abgereichert werden. Eventuell dienen Membrandomänen, zumindest im pflanzlichen System, nicht nur der Etablierung von Signalkomplexen, sondern in einigen Fällen auch der Negativregulierung von bestimmten Proteinaktivitäten, wie zum Beispiel in diesem Fall, der Produktion von reaktiven Sauerstoffspezies (ROS). N2 - In animal cells and yeast, membrane domains have been extensively characterized as signalling platforms (Foster et al., 2003) and characterized upon their resistance to treatment with non-ionic detergents (Shogomori et al., 2003). Such treatment of membranes can result in formation of artefacts and the appearance of a protein in these so-called “DRMs” is not necessarly related with its localization in native membrane domains. The lack of improved preparative methods, results in further use of DRM preparation to get a first insight into the protein composition of special membrane areas. The protein composition of isolated and MCD-treated detergent resistant membrane (DRM) fractions from purified plasma membrane of Arabidopsis thaliana was investigated by HPLC-ESI mass spectrometry. Eighty proteins could be identified which are thought to be localized in sterol rich membrane domains. Among these sterol-dependent proteins the two Remorins AtRem1.2 and AtRem1.3 and two essential ABA signalling components, namely the protein phosphatase 2C ABI1 and the kinase CPK21, could be identified. This phosphatase-kinase pair was very recently demonstrated to regulate the stomatal aperture via SLAH3-mediated anion release in an ABA-dependent manner (Geiger et al., 2011). Using biochemical, mass spectrometrical and microscopic approaches it could be shown that, in absence of ABA, the phosphatase ABI1 prevents the interaction between CPK21 and SLAH3 by dislocation of both proteins from membrane domains to surrounding membrane areas, which inhibits the phosphorylation and the activation of the channel (Demir et al., 2013). Among the potentially membrane domain localized proteins, the NADPH-oxidase AtrbohD could be identified to be weakly dependent upon a sterol rich environment. In contrast to the homologous AtrbohF, the isoform D shows no colocalization upon coexpression with the established membrane domain marker AtRem1.3 (Demir et al., 2013). This result implies that there must be co-residing membrane domains and that both oxidases are (at least temporarily) located in different membrane compartments. This could imply functionally different membrane platformes to regulate specific signalling cascades. After Coexpression of AtrbohD with 12 of the altogether 16 Remorin proteins, a colocalization with AtRem1.4 could be confirmed. In further experiments not only a clear localization in other membrane domains than the ones marked by AtRem1.3, but also a clear lateral immobility could be proofed for AtRem1.4, which therefore can be accepted as a marker for another kind of membrane domains. Regarding these results, the existence of diverse Types of membrane compartments, also in plants, can be accepted. At this time point of the investigations, no interaction partner of AtrbohD was known to regulate the function of the oxidase. Therefore, the relationship between localization and function of the oxidase was still an open question. Using different microscopic techniques (BiFC, SE-FRET, AB-FRET) to study protein-protein interactions, two potential interaction partners out of a set of five mesophyll expressed Ca2+-independent Snrk2-kinases, could be identified. The ABA-dependent kinase OST1/Snrk2.6, which also interacts with AtrbohF (Sirichandra et al., 2007), was demonstrated to be a potential interaction partner of AtrbohD as well as Snrk2.7. The treatment of transfected cells with MCD leads to a significant induction of the measured interaction efficiencies (EFRET) of all the five analysed Snrk2-kinases with AtrbohD. An interaction between two proteins does not automatically mean a functional regulation of a signalling pathway, therefore the influence of the identified potential interacting partners of AtrbohD on the ROS-producing activity was analysed. At this time point the Ca2+-dependent kinase CPK5 was identified to be an interacting and phosphorylating partner of AtrbohD. The kinase Snrk2.7 can induce the ROS-producing activity of AtrbohD to a similar level than CPK5, which means Snrk2.7 is not only interacting with AtrbohD, but also regulating its activity. The phosphorylation and activation of AtrbohD by Snrk2.7 is probably mediated by one of the two essential phosphorylation sites S343 and S347 (Nühse et al., 2007), but not on the analysed S39. In contrast, the kinase OST1 is indeed interacting with AtrbohD, but obviously not regulating its activity. The Snrk2.7-mediated ROS-producing activity of AtrbohD is also inducible upon treatment of the transfected cells with MCD. The NADPH-oxidase AtrbohD is regulated in dependency to its localization in specific membrane domains. Mutation oft the two essential phosphorylation sites leads to a dislocation from AtRem1.4-marked membrane domains. Treatment with MCD, that means disruption of the sterol rich membrane environment, resulted in significantly increased ROS-producing activity of AtrbohD upon interaction with the non-domain located kinase Snrk2.7. Probably the membrane domains do not only function as signalling platforms in plants, but in some cases also for negative regulation of certain protein activity, such as the production of reactive oxygen species (ROS). KW - Membrandomänen KW - AtrbohD KW - ROS KW - Ackerschmalwand KW - Plasmamembran KW - Signalpeptide Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107362 ER - TY - THES A1 - Demir, Fatih T1 - Lipid rafts in Arabidopsis thaliana leaves T1 - Lipid Rafts in Arabidopsis thaliana Blättern N2 - Arabidopsis thaliana (A.th.) mesophyll cells play a pivotal role in the regulation of the drought stress response. The signaling & transport components involved in drought stress regulation within lipid rafts of the plasma membrane were investigated by DRM isolation from highly purified plasma membranes. Detergent treatment with Brij-98 and Triton X-100 resulted in a total of 246 DRM proteins which were identified by nano HPLC-MS/MS. The majority of these proteins could be isolated by Triton X-100 treatment (78.5 %) which remains the ”golden” standard for the isolation of DRMs. Comparing in-gel and in-solution digestion approaches disclosed additional protein identifications for each method but the in-gel approach clearly delivered the majority of the identified proteins (81.8 %). Functionally, a clear bias on signaling proteins was visible – almost 1/3 of the detected DRM proteins belonged to the group of kinases, phosphatases and other signaling proteins. Especially leucine-rich repeat receptor-like protein kinases and calcium-dependent protein kinases were present in Brij-98 & Triton X-100 DRMs, for instance the calcium-dependent protein kinase CPK21. Another prominent member of DRMs was the protein phosphatase 2C 56, ABI1, which is a key regulator of the ABA-mediated drought stress response in A.th. The lipid raft localization of the identified DRM proteins was confirmed by sterol-depletion with the chemical drug MCD. Proteins which depend upon a sterol-rich environment are depleted from DRMs by MCD application. Especially signaling proteins exhibited a strong sterol-dependency. They represented the vast majority (41.5 %) among the Triton X-100 DRM proteins which were no longer detected following MCD treatment. AtRem 1.2 & 1.3 could be shown to be sterol-dependent in mesophyll cells as well as two CPKs (CPK10 & CPK21) and the protein phosphatase ABI1. AtRem 1.2 & 1.3 could be proven to represent ideal plant lipid raft marker proteins due to their strong presence in Triton X-100 DRMs and dependency upon a sterol-rich environment. When fluorescence labeled AtRem 1.2 & 1.3 were transiently expressed in A.th. leaves, they localized to small, patchy structures at the plasma membrane. CPK21 was an intrinsic member of Triton X-100 DRMs and displayed extreme susceptibility to sterol-depletion by MCD in immunological and proteomic assays. Calcium-dependent protein kinases (CPKs) have already been studied to be involved in drought stress regulation, for instance at the regulation of S-type anion channels in guard cells. Hence, further transient expression studies with the anion channel SLAH3, protein kinase CPK21 and its counterpart, protein phosphatase ABI1 were performed in Nicotiana benthamiana. Transient co-expression of CPK21 and the anion channel SLAH3, a highly mesophyll- specific homologue of the guard cell anion channel SLAC1, resulted in a combined, sterol-dependent localization of both proteins in DRMs. Supplementary co-expression of the counterpart protein phosphatase ABI1 induced dislocation of SLAH3 from DRMs, probably by inactivation of the protein kinase CPK21. CPK21 is known to regulate the anion channel SLAH3 by phosphorylation. ABI1 dephosphorylates CPK21 thus leading to deactivation and dislocation of SLAH3 from DRMs. All this regulative events are taking place in DRMs of A.th. mesophyll cells. This study presents the first evidence for a lipid raft-resident protein complex combining signaling and transport functions in A.th. Future perspectives for lipid raft research might target investigations on the lipid raft localization of candidate DRM proteins under presence of abiotic and biotic stress factors. For instance, which alterations in the DRM protein composition are detectable upon exogenous application of the plant hormone ABA? Quantitative proteomics approaches will surely increase our knowledge of the post-transcriptional regulation of gene activity under drought stress conditions. N2 - Mesophyllzellen spielen eine sehr wichtige Rolle bei der Regulierung der Trockenstress-Antwort in der Pflanze Arabidopsis thaliana (A.th.). Um die an der Trockenstress-Antwort beteiligten Signaltransduktions- und Transportproteine zu identifizieren, die sich in Lipid Rafts der pflanzlichen Plasmamembran befinden, wurden Detergent-Resistant Membranes (DRMs) aus hochreinen Arabidopsis Plasmamembran-Präparationen isoliert. Behandlung dieser hochreinen Plasmamembran mit den Detergentien Brij-98 und Triton X-100 führte zur Identifikation von 246 DRM Proteinen, die mittels der nano HPLC-MS/MS Technologie detektiert wurden. Hierbei war festzustellen, dass das Detergens Triton X-100 eindeutig den Standard für die Isolierung von DRMs darstellt. Die große Mehrheit (78,5 %) der identifizierten DRM Proteine konnte nämlich mit Triton X-100 aufgereinigt werden. Vergleichende Anwendung verschiedener Verdaumethoden (In-Gel & In-Lösung Verdau) zeigte auf, dass jede Methode einen unterschiedlichen Pool an Proteinen identifiziert. Das Gros der analysierten Proteine (81,8 %) konnte jedoch auch alleine durch In-Gel Verdau ermittelt werden. Unter den identifizierten DRM Proteinen stellten Proteine, die an der Signaltransduktion beteiligt sind, fast 1/3 dar. Diese Proteingruppe wurde hauptsächlich durch Kinasen und Phosphatasen vertreten. Insbesondere Leucin-reiche rezeptor-artige and Calcium-abhängige Proteinkinasen waren in Brij-98 & Triton X-100 DRMs zu beobachten, z.B. die Calcium-abhängige Proteinkinase CPK21. Ebenso in Triton X-100 DRMs wurde die Proteinphosphatase 2C 56 (ABI1) lokalisiert, die eine zentrale Rolle bei der ABA-vermittelten Antwort auf Trockenstress in A.th. inne hat. Zur Bestätigung der Lipid Raft Lokalisation der identifizierten DRM Proteine wurden Sterole aus der Plasmamembran mittels der Chemikalie Methyl-ß-D-cyclodextrin entfernt. Besonders Proteine, die an der Signalweiterleitung beteiligt sind, zeigten eine starke Abhängigkeit von der Präsenz der Sterole. Sie waren besonders betroffen: 41,5 % der Proteine, die nach MCD Behandlung nicht mehr in DRMs identifiziert wurden, gehörten zur Gruppe der Signaltransduktionsproteine. Beispiele waren sowohl die Calcium-abhängigen Proteinkinasen CPK10 & CPK21, als auch die Proteinphosphatase ABI1. Die A.th. Remorine AtRem 1.2 & 1.3 stellen ideale Kandidaten für pflanzliche Lipid Raft Markerproteine dar, da beide sowohl ziemlich stark in Triton X-100 DRMs vertreten, als auch im besonderen Maße auf die Präsenz von Sterolen in DRMs angewiesen sind. Fluoreszenzmarkierte AtRem 1.2 & 1.3 Fusionskonstrukte lokalisierten bei transienter Expression in A.th. Blättern in kleinen, punktförmigen Strukturen an der Plasmamembran. Diese Strukturen zeigten frappierende Ähnlichkeit zu bereits bekannten Mustern von Lipid Raft Proteinen in Hefen und Säugetieren. CPK21 stellte ein besonderes Mitglied der Triton X-100 DRMs dar, welches ebenfalls stark auf die Präsenz von Sterolen in DRMs angewiesen war. Dies konnte durch immunologische and massenspektrometrische Experimente nachgewiesen werden. Calcium-abhängige Proteinkinasen (CPKs) sind an der Regulierung der Trockenstress-Antwort in Pflanzen beteiligt, z.B. bei der Aktivierung von S-typ Anionenkanälen in Schließzellen von A.th. Aufgrund dieser Beteiligung an der Trockenstress-Antwort, wurden transiente Co-Expressionsstudien des Anionenkanals SLAH3, der Proteinkinase CPK21 und ihrem Gegenspieler, der Proteinphosphatase ABI1 in Nicotiana benthamiana Blättern durchgeführt. Transiente Co-Expression von CPK21 und SLAH3, einem zum schließzell-spezifischen Anionenkanal SLAC1 homologen Protein in Mesophyllzellen, resultierte in einer sterol-abhängigen Co-Lokalisation beider Proteine in DRMs. Zusätzliche Gabe vom Gegenspieler ABI1 führte zum Verschwinden von SLAH3 aus DRMs, was möglicherweise auf die Inaktivierung der Proteinkinase CPK21 durch ABI1 zurückzuführen ist. Für CPK21 konnte schon aufgezeigt werden, dass es den Anionenkanal SLAH3 durch Phosphorylierung aktiviert. ABI1 hingegen dephosphoryliert die Proteinkinase CPK21 und führt zur Deaktivierung vom Anionenkanal SLAH3, welcher dann auch nicht mehr in DRMs lokalisierbar ist. Diese streng regulierten Prozesse im Rahmen der Trockenstress-Antwort spielen sich in DRMs von A.th. Mesophyllzellen ab. Die vorliegende Arbeit ist der erste Bericht eines Lipid Raft-lokalisierten Proteinkomplexes, der Signalweiterleitung und Transportprozesse in Arabidopsis Lipid Rafts vereint. Zukünftige Lipid Raft Studien könnten sich mit der Lokalisation von putativen DRM Proteinen nach Anwendung von abiotischen und biotischen Stressfaktoren befassen. So könnte man sich die Frage stellen, inwiefern sich die Proteinzusammensetzung in DRMs von der Zugabe des pflanzlichen Hormons Abscisinsäure (ABA) beeinflussen läßt. Insbesondere quantitative Proteomstudien werden in Zukunft mit Sicherheit unser Wissen über die posttranskriptionelle Regulation der Genaktivität bei Trockenstress erweitern. KW - Ackerschmalwand KW - Abscisinsäure KW - Plasmamembran KW - Stressreaktion KW - Mesophyll KW - ABA KW - DRMs KW - Membrandomänen KW - Trockenstress KW - Anionenkanal KW - Biomembran KW - Blatt KW - Membran KW - ABA KW - DRMs KW - Membrane domains KW - Drought stress KW - Anion channel Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53223 ER -