TY - THES A1 - Kämmerer, Christian T1 - Fehlmengenkosten in der Distributionslogistik: Analyse und Modellierung aus Sicht der Investitionsgüterindustrie T1 - Out-of-Stock Costs in Distributions Logistics: Analysis and Modeling from the Perspective of the Industrial Goods Industry N2 - In der wissenschaftlichen Diskussion wie auch auf betrieblicher Ebene werden Fehlmengenkosten bei mangelhafter Lieferfähigkeit mit Hinweis auf einen enormen und damit unwirtschaftlichen Erhebungsaufwand meist ignoriert. Stattdessen werden oft Sicherheitsbestände definiert, die ohne ausreichende Berücksichtigung der Kundenbedürfnisse und integrierte Modellansätze mögliche Bedarfs-spitzen auf Herstellerseite abfedern sollen. Findet doch eine Modellierung in quantitativen Ansätzen stochastischer Lagerhaltungsmodelle statt, so fehlen aus Sicht eines Investitionsgüterherstellers oft wichtige Parameter oder sind unzureichend modelliert. Die vorliegende Arbeit verfolgt das Ziel, Fehlmengenkosten auf der einen und Bestandskosten auf der anderen Seite inhaltlich genauer zu beleuchten und in eine grundsätzliche Beziehung zueinander zu setzen. Beide Kostenblöcke werden in der größtmöglichen Granularität in ein distributionslogistisches Modell überführt, sodass Determinanten, Hierarchien und Wechselwirkungen in einen nachvollziehbaren Gesamtzusammenhang gebracht werden. Zu diesem Zweck werden relevante Distributionsmodelle bei stochastischer Nachfrage geprüft und auf ihre Relevanz für die Problemstellung dieser Arbeit hin analysiert. Dabei konnte festgestellt werden, dass weder die verschiedenen Kostenarten von Fertigwarenbeständen ausreichend identifiziert, noch die unterschiedlichen Ausprägungen von Fehlmengenkosten umfänglich abgebildet wurden. Vor diesem Hintergrund kristallisiert sich heraus, dass existierende Modelle und Rechenbeispiele bei deren Umsetzung auf eine Problemstellung in der betrieblichen Praxis als weitestgehend untauglich eingestuft werden müssen. Im Sinne eines wertorientierten Bestandsmanagements wird in besonderer Weise darauf geachtet, dass kundenorientierte Strategien hinsichtlich eines festzulegenden Lieferservicegrades so festgelegt werden, dass keine isolierte Betrachtung von Bestandskosten einerseits und Fehlmengenkosten andererseits vorgenommen wird. Dadurch konnte ein klareres Bild geschaffen werden, dass einseitige Bestandssenkungen zwangsläufig erhöhte Fehlmengenkosten in definiertem Umfang nach sich ziehen. Diese können die Lieferfähigkeit über einen längeren Betrachtungszeitraum so negativ beeinflussen, dass das Nachfrageverhalten nachhaltig geschädigt wird und im Extremfall zu einem Abwanderungsverhalten der Kunden führt. Durch die Modifizierungen einiger wichtiger Prämissen und Modellparameter, welche die Merkmale der Investitionsgüterindustrie in besonderer Weise berücksichtigt, wurde ein dynamisches Entscheidungsmodell entwickelt, in dem nachvollziehbar eine nützliche Symbiose zwischen theoretischer Erkenntnis und praktischer Problemstellung geschaffen werden konnte. Diese Arbeit leistet damit einen wichtigen Beitrag, die oftmals auf reine Bestandssenkungen fokussierte Diskussion ohne adäquaten Modellansatz weitestgehend zu versachlichen und auf eine faktenbasierte, quantitative Grundlage zu stellen. N2 - In scientific discussion as well as on company levels, out-of-stock costs are often ignored in case of inadequate delivery capacity, with reference to an enormous and thus uneconomical analysis effort. Instead, safety stocks are often defined which are designed to cushion possible demand peaks on manufacturer's side without sufficient consideration of customer requirements and integrated model approaches. If modeling is carried out in quantitative approaches of stochastic inventory models, important parameter from an industrial goods manufacturer point of view are often missing or insufficiently modeled. The present thesis aims to elucidate out-of-stock costs on one hand and inventory costs on the other, and to establish a fundamental relationship with each other. Both cost pools are analyzed with its largest possible granularity into a distributive-logistic model, so that determinants, hierarchies and interactions are brought into a post-executable overall context. For this purpose, relevant distribution models for stochastic demand are examined and analyzed for their relevance for the problem definition of this paper. It was found that neither the different cost types of finished goods were adequately identified nor the different manifestations of out-of-stock costs were shown. Against this background, it emerges that existing models and sample calculations must be classified as largely unsuitable in their implementation to a problem in the operational practice. In the sense of value-oriented inventory management, particular attention is paid to the fact that customer-oriented strategies with regard to a service level to be defined are determined in such a way that no isolated consideration of inventory costs on one side and out-of-stock costs on the other side are undertaken. It gives a clearer picture that unilateral inventory reductions inevitably lead to increased out-of-stock costs to a defined extent. This situation may have a negative impact on the ability to deliver over a longer period of time so that demand behavior is sustainably damaged and, in extreme cases, leads to a churning behavior of the customers. By modifying some important premises and model parameters, which take particular account of the characteristics of industrial goods industry, a dynamic decision-making model was developed in which a useful symbiosis between theoretical knowledge and practical problem-solving could be established. Thus, this thesis makes an important contribution to largely disregard the discussion focused on pure inventory reductions without an adequate model approach and to put it on a factual, quantitative basis. KW - Fehlmengenkosten KW - Investitionsgüterindustrie KW - Bestandsmanagement KW - Out-of-Stock Costs KW - Modelle KW - Inventory Costs KW - Service Level KW - Inventory Management KW - Modeling KW - Bestandskosten KW - Lieferbereitschaftsgrad Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143013 ER - TY - THES A1 - Schmitt, Norbert T1 - Measurement, Modeling, and Emulation of Power Consumption of Distributed Systems T1 - Messung, Modellierung und Emulation des Stromverbrauchs von verteilten Systemen N2 - Today’s cloud data centers consume an enormous amount of energy, and energy consumption will rise in the future. An estimate from 2012 found that data centers consume about 30 billion watts of power, resulting in about 263TWh of energy usage per year. The energy consumption will rise to 1929TWh until 2030. This projected rise in energy demand is fueled by a growing number of services deployed in the cloud. 50% of enterprise workloads have been migrated to the cloud in the last decade so far. Additionally, an increasing number of devices are using the cloud to provide functionalities and enable data centers to grow. Estimates say more than 75 billion IoT devices will be in use by 2025. The growing energy demand also increases the amount of CO2 emissions. Assuming a CO2-intensity of 200g CO2 per kWh will get us close to 227 billion tons of CO2. This emission is more than the emissions of all energy-producing power plants in Germany in 2020. However, data centers consume energy because they respond to service requests that are fulfilled through computing resources. Hence, it is not the users and devices that consume the energy in the data center but the software that controls the hardware. While the hardware is physically consuming energy, it is not always responsible for wasting energy. The software itself plays a vital role in reducing the energy consumption and CO2 emissions of data centers. The scenario of our thesis is, therefore, focused on software development. Nevertheless, we must first show developers that software contributes to energy consumption by providing evidence of its influence. The second step is to provide methods to assess an application’s power consumption during different phases of the development process and to allow modern DevOps and agile development methods. We, therefore, need to have an automatic selection of system-level energy-consumption models that can accommodate rapid changes in the source code and application-level models allowing developers to locate power-consuming software parts for constant improvements. Afterward, we need emulation to assess the energy efficiency before the actual deployment. N2 - Die heutigen Cloud-Rechenzentren verbrauchen eine enorme Menge an Energie, und der Energieverbrauch wird in Zukunft noch steigen. Eine Schätzung aus dem Jahr 2012 ergab, dass Rechenzentren etwa 30 Milliarden Watt Strom verbrauchen, was einem Energieverbrauch von etwa 263TWh pro Jahr entspricht. Der Energieverbrauch wird bis zum Jahr 2030 auf 1929TWh ansteigen. Dieser prognostizierte Anstieg des Energiebedarfs wird durch die wachsende Zahl der in der Cloud bereitgestellten Dienste angeheizt. In den letzten zehn Jahren wurden bereits 50% der Arbeitslasten in Unternehmen in die Cloud verlagert. Außerdem nutzen immer mehr Geräte die Cloud, um Funktionen bereitzustellen und das Wachstum von Rechenzentren zu ermöglichen. Schätzungen zufolge werden bis 2025 mehr als 75 Milliarden IoT-Geräte im Einsatz sein. Der wachsende Energiebedarf erhöht auch die Menge der CO2-Emissionen. Geht man von einer CO2-Intensität von 200g CO2 pro kWh in einem eher optimistischen Szenario aus, kommen wir auf fast 227 Milliarden Tonnen CO2. Dieser Ausstoß ist mehr CO2 als die Emissionen aller energieerzeugenden Kraftwerke in Deutschland im Jahr 2020. Rechenzentren verbrauchen jedoch Energie, weil sie auf Serviceanfragen reagieren, die durch Rechenressourcen erfüllt werden. Es sind also nicht die Benutzer und Geräte, die in einem Rechenzentrum Energie verbrauchen, sondern die Software, die die Hardware steuert. Obwohl die Hardware physisch Energie verbraucht, ist sie nicht immer für die Energieverschwendung verantwortlich. Die Software selbst spielt eine wichtige Rolle bei der Reduzierung des Energieverbrauchs und der CO2-Emissionen von Rechenzentren. Das Szenario unserer Arbeit konzentriert sich daher auf die Softwareentwicklung. Dennoch müssen wir die Entwickler zunächst darauf hinweisen, dass die Software zum Energieverbrauch beiträgt, indem wir ihren Einfluss nachweisen. Der zweite Schritt ist die Bereitstellung von Methoden zur Bewertung des Energieverbrauchs einer Anwendung in den verschiedenen Phasen des Entwicklungsprozesses, um moderne DevOps und agile Entwicklungsmethoden zu ermöglichen. Wir brauchen daher eine automatische Auswahl von Energieverbrauchsmodellen auf Systemebene, die schnelle Änderungen im Quellcode berücksichtigen können, und Modelle auf Anwendungsebene, die es den Entwicklern ermöglichen, stromverbrauchende Softwareteile für ständige Verbesserungen zu lokalisieren. Danach benötigen wir eine Emulation, um die Energieeffizienz vor dem eigentlichen Einsatz zu bewerten KW - Leistungsbedarf KW - Energieeffizienz KW - Cloud Computing KW - Rechenzentrum KW - Modellierung KW - Power Consumption KW - Energy Efficiency KW - Cloud KW - Distributed System KW - Modeling Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276582 ER - TY - THES A1 - Philippi, Nicole T1 - Modellierung von Signalwegen in verschiedenen biologischen Systemen T1 - Modeling of signaling pathways in different biological systems N2 - Die Apoptose der Leberzellen ist abhängig von externen Signalen wie beispielsweise Komponenten der Extrazellulären Matrix sowie anderen Zell-Zell-Kontakten, welche von einer Vielfalt und Vielzahl an Knoten verarbeitet werden. Einige von ihnen wurden im Rahmen dieser Arbeit auf ihre Systemeffekte hin unter- sucht. Trotz verschiedener äußerer Einflüsse und natürlicher Selektion ist das System daraufhin optimiert, eine kleine Anzahl verschiedener und klar voneinander unterscheidbarer Systemzustände anzunehmen. Die verschiedenartigen Einflüsse und Crosstalk-Mechanismen dienen der Optimierung der vorhandenen Systemzustände. Das in dieser Arbeit vorgestellte Modell zeigt zwei apoptotische sowie zwei nicht-apoptotische stabile Systemzustände, wobei der Grad der Aktivierung eines Knotens bis zu dem Moment stark variieren kann, in welchem der absolute Systemzustand selbst verändert wird (Philippi et al., BMC Systems Biology,2009) [1]. Dieses Modell stellt zwar eine Vereinfachung des gesamten zellulären Netzwerkes und seiner verschiedenen Zustände dar, ist aber trotz allem in der Lage, unabhängig von detaillierten kinetischen Daten und Parametern der einzelnen Knoten zu agieren. Gleichwohl erlaubt das Modell mit guter qualitativer Übereinstimmung die Apoptose als Folge einer Stimulation mit FasL zu modellieren. Weiterhin umfasst das Modell sowohl Crosstalk-Möglichkeiten des Collagen-Integrin-Signalwegs, ebenso berücksichtigt es die Auswirkungen der genetischen Deletion von Bid sowie die Konsequenzen einer viralen Infektion. In einem zweiten Teil werden andere Anwendungsmöglichkeiten dargestellt. Hormonale Signale in Pflanzen, Virusinfektionen und intrazelluläre Kommunikation werden semi-quantitativ modelliert. Auch hier zeigte sich eine gute Ubereinstimmung der Modelle mit den experimentellen Daten. N2 - Apoptosis of liver cells is dependent on external signals such as components of the extracellular matrix and cell-cell-contacts, which are processed by a variety of numerous nodes of which several are examined here for their system effects. Despite different input interferences and presumably also due to natural selecti- on, the system nevertheless appears to be optimized to adopt a small number of clear and distinguishable states, and the various inputs and crosstalk mechanisms only optimize the best choice between them. For the model described within this work, two nonapoptotic and two apoptotic states are found, although the degree of activation at a node can differ widely until the absolute system state is altered (Philippi et al., BMC Systems Biology, 2009) [1]. The model is still a simplification of the complete cellular network and its different states, and operates independently of detailed kinetic data and parameters for individual nodes. Nevertheless, it allows modeling the readout of apoptosis after FasL stimulation with qualitative agreement and includes crosstalks from collagen/integrin signa- ling, the effect of genetic deletion of Bid and the consequences of viral infection. The second part of this work deals with other applications using this method. Semi-quantitative models are used for hormonal signaling in plants, viral infec- tions and intra-cellular communication. The simulated results fit to the experi- mental data provided. KW - Systembiologie KW - Modellierung KW - Bioinformatik KW - Apoptose KW - Systems Biology KW - Modeling KW - Bioinformatics KW - Apoptosis Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57690 ER -