TY - THES A1 - Metzger, Christian Thomas Peter T1 - Development of photoemission spectroscopy techniques for the determination of the electronic and geometric structure of organic adsorbates T1 - Entwicklung von Photoemissionsmethoden zur Bestimmung der elektronischen und geometrischen Struktur von organischen Adsorbaten N2 - The projects presented in this thesis cover the examination of the electronic and structural properties of organic thin films at noble metal-organic interfaces. Angle-resolved photoemission spectroscopy is used as the primary investigative tool due to the connection of the emitted photoelectrons to the electronic structure of the sample. The surveyed materials are of relevance for fundamental research and practical applications on their own, but also serve as archetypes for the photoemission techniques presented throughout the four main chapters of this thesis. The techniques are therefore outlined with their adaptation to other systems in mind and a special focus on the proper description of the final state. The most basic description of the final state that is still adequate for the evaluation of photoemission data is a plane wave. Its simplicity enables a relatively intuitive interpretation of photoemission data, since the initial and final state are related to one another by a Fourier transform and a geometric factor in this approximation. Moreover, the initial states of some systems can be reconstructed in three dimensions by combining photoemission measurements at various excitation energies. This reconstruction can even be carried out solely based on experimental data by using suitable iterative algorithms. Since the approximation of the final state in the photoemission process by a plane wave is not valid in all instances, knowledge on the limitations of its applicability is indispensable. This can be gained by a comparison to experimental data as well as calculations with a more detailed description of the photoemission final state. One possible appraoch is based on independently emitting atoms where the coherent superposition of partial, atomic final states produces the total final state. This approach can also be used for more intricate studies on organic thin films. To this end, experimental data can be related to theoretical calculations to gain extensive insights into the structural and electronic properties of molecules in organic thin films. N2 - Die in dieser Arbeit vorgestellten Projekte behandeln die Untersuchung der elektronischen und strukturellen Eigenschaften organischer Dünnschichtfilme an Grenzflächen zwischen Edelmetallen und organischen Materialien. Als maßgebliche Messmethode wird die winkelaufgelöste Photoelektronenspektroskopie aufgrund der Verbindung der emittierten Photoelektronen mit der elektronischen Struktur der untersuchten Probe angewandt. Die verwendeten Materialien sind sowohl in der Grundlagenforschung als auch für praktische Anwendungen relevant, und dienen gleichzeitig auch als Beispiele für die Photoemissionstechniken, die in den vier Hauptkapiteln der Arbeit präsentiert werden. Diese Techniken werden daher auch bezüglich ihrer Ubertragbarkeit auf andere Systeme dargestellt, wobei besonders auf die korrekte Beschreibung des Endzustands in der Photoemission eingegangen wird. Die simpelste Beschreibung des Endzustands, die für die Auswertung von Photoemissionsdaten noch sinnvoll verwendet werden kann, stellt eine ebene Welle dar. Ihre Einfachheit ermöglicht eine relativ intuitive Interpretation von Photoemissionsdaten, da Anfangs- und Endzustand in dieser Näherung lediglich durch eine Fourier-Transformation und einen geometrischen Faktor verknüpft sind. Kombiniert man die Photoemissionsmessungen bei unterschiedlichen Anregungsenergien, lassen sich zusätzlich die Anfangszustände bestimmter Systeme in guter Näherung dreidimensional rekonstruieren. Mit Hilfe geeigneter iterativer Algorithmen ist diese Rekonstruktion darüber hinaus mit ausschließlich experimentellen Daten realisierbar. Da die Näherung des Endzustands mit einer ebenen Welle nur unter bestimmten Bedingungen ausreichend präzise das reale System widerspiegelt, ist die Kenntnis über die Grenzen ihrer Anwendbarkeit von Bedeutung. Dies kann über den Vergleich mit experimentellen Daten sowie Rechnungen mit detailierteren Beschreibungen des Endzustands in der Photoemission geschehen. Ein möglicher Ansatz basiert auf unabhängig voneinander emittierenden Atomen, deren kohärent überlagerte, partielle Endzustände den gesamten Endzustand formen. Dieser Ansatz kann des Weiteren für komplexere Untersuchungen an organischen Dünnschichten verwendet werden. So können über den Vergleich von experimentellen Messung mit theoretischen Rechnungen umfangreiche Einblicke auf die strukturellen und elektronischen Eigenschaften der Moleküle in organischen Dünnschichten gewonnen werden. KW - ARPES KW - Molekülphysik KW - Organisches Molekül KW - Photoelektronenspektroskopie KW - LEED KW - Angle-resolved Photoemission Spectroscopy KW - Winkelaufgelöste Photoemissionspektroskopie KW - Molecular Physics KW - Molekülphysik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229525 ER - TY - THES A1 - Grimm, Manuel T1 - Anwendung und Weiterentwicklung der winkelaufgelösten Photoemission an Molekül-Metall-Grenzflächen: Geometrische Struktur von Bilagenschichten und Kondoeffekt T1 - Application and further development of angle-resolved photoemission on molecule-metal interfaces: Geometric structure of bilayers and kondo effect N2 - Im Rahmen dieser Dissertation wurden organische Dünnschichten und deren Grenzflächen an Metallen mittels Photoemissionsspektroskopie untersucht. Hierbei wurden, unter Einstrahlung von Photonen mit einer Energie von zumeist 20-50 eV Elektronen des Valenzbandes des zu untersuchenden Probensystems ausgelöst, und in Abhängigkeit der kinetischen Energie und des Austrittswinkels bzw. Impulses charakterisiert. Eine wesentliche Aufgabe dieser Arbeit war es, die technische Entwicklung experimenteller Apparaturen des letzten Jahrzehnts dazu zu verwenden, um mit möglichst großer energetischer Auflösung bereits etablierte aber dennoch vielversprechende Systeme erneut zu untersuchen. Im ersten Hauptabschnitt wurden hierzu Einzel- und Doppelschichten bestehend aus Pentacenmolekülen mittels Molekularstrahlepitaxie auf einer Ag(110)-Oberfläche abgeschieden. Eine anschließende Untersuchung der emittierten Photoelektronen mittels Impulsmikroskopie, wodurch man in der Lage ist, die Photoelektronen des gesamten oberen Halbraumes gleichzeitig zu detektieren, ergab eine Verkippung der Moleküle der ersten und zweiten Lage der Doppelschichten. Im Vergleich hierzu liegen die Moleküle der Einzelschicht flach auf dem Substrat auf. Der Übergang von der Einzel- zur Doppelschicht erwirkt demnach eine Verkippung der Moleküle der ersten Lage, welche aufgrund der direkten Wechselwirkung mit dem Substrat nicht zu erwarten war. Im weiteren Verlauf dieses Abschnittes konnten unter Verwendung eines hemisphärischen Analysators mit hoher Energieauflösung weitere Feinheiten des Valenzbandspektrums, wie z.B. ein ungewöhnlicher Kurvenverlauf des Intensitätsmaximums des zweiten besetzten Molekülorbitals der ersten (unteren) Pentacenlage ausgemacht werden. Im zweiten Hauptabschnitt wurde eine energetisch schmale Resonanz, welche in der Literatur mit dem Kondoeffekt in Verbindung gebracht wird, im Valenzbandspektrum zweier unterschiedlicher Metall-Phthalocyaninmoleküle (Nickel- und Kupfer-Phthalocyanin) auf den drei Oberflächen Ag(100), Ag(110) und Ag(111) adsorbiert und auf ihre Temperaturabhängigkeit im Bereich von 20-300 Kelvin untersucht. Hierbei ergab sich neben der Feststellung des Vorhandenseins des Maximums auf allen drei Silber-Oberflächen ein energetischer Versatz dieses Maximums durch Abkühlen der Probe im Falle der Substrate Ag(100) und Ag(110), welcher in der vorliegenden Größenordnung von bis zu 100 meV ungewöhnlich für bisherige bekannte Kondosysteme ist. Auf Ag(111) konnte kein signifikanter Versatz im Rahmen der Messungenauigkeit festgestellt werden. Im weiteren Verlauf wurden auch von diesen Probensystemen Messungen mittels Impulsmikroskopie durchgeführt, welche in den dadurch erhaltenen Impulskarten geringe Anomalien aufwiesen. Insgesamt kann das vorliegende Verhalten dieser Systeme bis zum Abschluss dieser Arbeit nicht endgültig erklärt werden. Die für organische Systeme höchst ungewöhnliche Theorie der Ausbildung eines Kondogitters, in welcher die Wechselwirkung einzelner Störstellen zur Ausbildung eines elektronenartigen Bandes führt, wäre jedoch zunächst in der Lage, ein derartiges Verhalten, wenn auch nicht in dem hier gezeigten Ausmaß, teilweise zu erklären. N2 - In this dissertation organic thin films and their interfaces to metals are investigated by photoemission spectroscopy. Electrons of the valence band of the sample system to be investigated are excited under irradiation of photons with an energy in the order of 20-50 eV, and characterized as a function of the kinetic energy and the exit angle or momentum. An essential task of this work was to use the technical development of state-of-the-art experimental apparatuses of the last decade in order to investigate already established but nevertheless promising systems with the highest possible energetic resolution. In the first main section, single and double layers consisting of pentacene were deposited by molecular beam epitaxy on an Ag(110) surface. A subsequent examination of the emitted photoelectrons by momentum microscopy, which enables the simultaneous measurement of the entire upper half-space, revealed a tilting of the molecules of the first and second layers of the double layers. In comparison, the molecules of the single layer lie flat on the substrate. Therefore, the transition from the single to the double layer causes a tilting of the molecules of the first layer, which was not to be expected due to the direct interaction with the substrate. In the further course of this section, using a hemispherical analyzer with high energy resolution, further small energetic features of the valence band spectrum could be detected, e.g. an unusual shape of the intensity of the second occupied orbital of the first (bottom) pentacene layer. In the second main section, an energetically narrow resonance, which is associated with the Kondo effect in the literature, was investigated in the valence band spectrum of two different metal phthalocyanine molecules (nickel and copper) adsorbed on the three surfaces Ag(100), Ag(110) and Ag(111) for their temperature dependence in the range of 20-300 Kelvin. Besides the determination of the occurrence of the maximum on all three silver surfaces, an energetic shift of this maximum resulted from cooling the sample on the substrates Ag(100) and Ag(110), which in the present order of magnitude of approx. 100 meV is unusual for the previously known Kondo systems. On Ag(111) no significant shift could be found within the uncertainty of the measurement. In the further course, measurements of these sample systems were also carried out using a momentum microscope, which showed minor anomalies in the resulting momentum maps. Overall, the presented behaviour of these systems could not be explained within the frame of this dissertation. However, the theory of the formation of a Kondo lattice, in which the interaction of individual impurities leads to the formation of an electron-like band, which is highly unusual for organic systems, might be able to partially explain such a behaviour, even if not to the extent shown here. KW - Winkelaufgelöste Photoemissionsspektroskopie KW - Molekülphysik KW - Kondo-Effekt KW - Tieftemperaturphänomene KW - Low temperature effects Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213797 ER - TY - THES A1 - Renziehausen, Klaus T1 - Wechselwirkung von Molekülen mit Laserpulsen: Untersuchungen zur numerischen Implementierung zeitabhängiger Störungstheorie und zu Effekten der absoluten Phase von Laserpulsen beliebiger Länge T1 - Interaction of molecules with laser pulses: researches on the numerical implementation of time-dependent perturbation theory and on carrier envelope phase effects for laser pulses of arbitrary length N2 - In dieser Dissertation wurden zwei Aspekte der Wechselwirkung von Laserpulsen mit Molekülen betrachtet: Erstens wurden numerische Algorithmen, die auf der zeitabhängigen Störungstheorie basieren, zur Berechnung von quantenmechanischen Wellenfunktionen analysiert. Zweitens wurden Effekte der absoluten Phase (Carrier envelope phase = CEP) von Laserpulsen bei der Laseranregung molekularer Systeme analysiert. In den Analysen zum ersten Aspekt wurden zwei verschiedene Algorithmen - in dieser Arbeit als simple und improved algorithm bezeichnet - verwendet, und die Normabweichung von mit diesen Algorithmen berechneten Wellenfunktionen untersucht. Es konnte gezeigt werden, dass diese Normabweichung für beide Algorithmen in zwei unterschiedliche Beiträge zerlegt werden kann. Der erste Normabweichungsbeitrag tritt aufgrund der numerischen Diskretisierung der Zeit auf und verschwindet, wenn der Zeitschritt, der die Dauer der Intervalle für diese Diskretisierung angibt, gegen Null geht. Man kann den ersten Normabweichungsbeitrag mit exzellenter Genauigkeit berechnen und seine Eigenschaften, die sich für die beiden Algorithmen erheblich unterschieden, eingehend analysieren. Der zweite Normabweichungsbeitrag tritt dadurch auf, dass die zeitabhängige Störungstheorie nicht normerhaltend ist, und geht daher gegen Null, wenn die Störungsordnung gegen unendlich geht. Dieser zweite Beitrag ist außerdem in guter Näherung unabhängig vom Zeitschritt und für beide Algorithmen näherungsweise gleich. Des Weiteren kann man das Verhalten des zweiten Normabweichungsbeitrags im Gegensatz zum ersten Beitrag nur qualitativ beschreiben. Für die Analyse zum zweiten Themengebiet dieser Arbeit, den CEP-Effekten, wurde betrachtet, ob CEP-Effekte auch für Laserpulse beliebiger Länge auftreten können. Über eine analytische Betrachtung erkennt man, dass dies für ein Zweiniveausystem nur dann der Fall ist, wenn beide Zustände vor Beginn der Wechselwirkung des Systems mit dem Laserpuls besetzt sind. Man kann aus diesem Ergebnis folgern, dass für einen Laserpuls, der zwei elektronische Zustände eines Moleküls über Einphotonenübergänge koppelt, in der Regel kein CEP-Effekt für beliebige Längen dieses Pulses auftritt. Der Grund dafür ist, dass vor der Wechselwirkung eines molekularen Systems mit einem Laserpuls für dieses üblicherweise nur der elektronische Grundzustand besetzt ist. In dieser Arbeit wird gezeigt, dass dieses Problem durch ein spezielles Zweipulsschema für die Anregung eines molekularen Systems gelöst werden kann. Für dieses Pulsschema wird ein erster Puls verwendet, der zeitlich so kurz ist, dass Wellenpakete in mehreren elektronischen Zuständen angeregt werden. Der nachfolgende zweite Laserpuls ist spektral schmal, und seine zeitliche Länge kann beliebig groß gewählt werden. Man erhält für dieses Pulsschema Observablen, die von der CEP des zweiten Pulses, aber nicht von der CEP des ersten Pulses abhängen; somit ist ein CEP-Effekt nachweisbar. Derartige Observablen sind geometrische Asymmetrien für Zerfallsprodukte von Photodissoziationsreaktionen. Insbesondere unterscheidet sich das hier vorgestellte Pulsschema von anderen Zweipulsschemata, für welche Observablen von der Differenz der CEPs beider Pulse abhängen, aber nicht von der CEP einer der beiden Pulse allein. N2 - In this dissertation, two aspects for the interaction of laser pulses with molecules were considered: First, we analysed numerical algorithms which are based on time-dependent perturbation theory. Second, carrier envelope phase (= CEP) effects of laser pulses for the laser excitation of molecular systems were studied. In the analyses to the first aspect, two different algorithms referred in this thesis as simple and improved algorithm were used, and the norm deviation occurring for wave functions calculated with these algorithms was examined. As a result, this norm deviation can be divided in two different contributions for both algorithms. The first contribution occurs because of the numerical discretisation of time and disappears when the time step defining the length of the intervals for this discretisation goes to zero. This first contribution can be calculated with excellent accuracy, and its properties, which differ substantially for the two algorithms, can be analysed in detail. The second contribution occurs because time-dependent perturbation theory is not norm conserving. Thus, it goes to zero when the perturbation order goes to infinity. Moreover, this second contribution is in good approximation independent of the time step, and it is approximately equal for both algorithms. Futhermore, in contrast to the first contribution the behaviour of the second contribution can be described only qualitatively. For the analyses to the second aspect of this thesis, namely CEP effects, it was considered if CEP effects can also appear for laser pulses of arbitrary length. An analytical inspection reveals that for a two level system this is only true if both states are occupied before the laser pulse starts to interact with the system. This result allows to conclude that as a rule when a laser pulse couples two electronical states of a molecule by one photon transitions, no CEP effect arises for arbitrary lengths of this laser pulse. The reason for this is that normally only the electronical ground state is occupied before the interaction of the molecular system with the laser pulse starts. In this thesis it is shown that this problem can be solved with a special two-pulse-scheme for the excitation of a molecular system. For this pulse scheme a first pulse is applied which is temporally as short as to excite wave packets in several electronic states. The subsequent second laser pulse is spectrally small, and its temporal length can be chosen unconditionally large. For this pulse scheme there are observables which depend on the CEP of the second pulse but not on the CEP of the first pulse, thus a CEP effect is measurable. Such observables are geometrical asymmetries for decay products of photodissociation reactions. In particular the pulse scheme presented here differs from other two-pulse-schemes where the observables depend on the difference of the CEPs of both pulses but not on the CEP of one of the two pulses alone. KW - Störungstheorie KW - Computerphysik KW - Laserchemie KW - Kurzzeitphysik KW - Molekülphysik KW - Numerische Physik KW - Ultrakurzzeitlaser KW - Effekte der absoluten Phase KW - Quantendynamik KW - Molekularbewegung KW - Computational physics KW - Ultrashort pulse lasers KW - Carrier envelope phase effects KW - Quantum dynamics KW - Molecular motion Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100850 ER - TY - THES A1 - Wießner, Michael T1 - Isolierte Moleküle und delokalisierte Zustände: Einblick in die elektronische Struktur organischer Adsorbate mittels winkelaufgelöster Photoemission T1 - Isolated molecules and delocalised states: Insight into the electronic structure of organic adsorbates by angle-resolved photoemission N2 - Die vorliegende Arbeit demonstriert an Hand von verschiedenen Modellsystemen wie detailliert sich die grundlegenden Eigenschaften molekularer Adsorbate mit der winkelaufgelösten Photoemission erkunden lassen. Die von Peter Puschnig et al. vorgestellte Verknüpfung zwischen Photoemissionsintensität und den Molekülorbitalen im Grundzustand mittels einer Fouriertransformation war dabei entscheidend, um die verschiedenen physikalischen Effekte einordnen und verstehen zu können. Während für Coronen oder HBC die Orbitale im Grundzustand sehr gut zum Experiment passen, lassen sich für PTCDA und NTCDA einige Abweichungen von der DFT-Rechnung auf Basis der (semi-)lokalen GGA- oder LDA-Funktionale erkennen, die sich bei Messungen mit s-Polarisation hervorheben lassen. Diese können auf den Einfluss des Endzustandes in der Photoemission zurückgeführt werden. Im Rahmen der Dysonorbitale lassen sich die dafür verantwortlichen Relaxationseffekte zwischen dem N-Elektronensystem des Moleküls im Grundzustand und dem (N-1)-Elektronensystem des zurückbleibenden Kations explizit beschreiben. Die Berechnung des Photoemissionssignals mittels Fouriertransformation des Grundzustandes kann darüber hinaus weitere physikalische Effekte nicht korrekt berücksichtigen. Erste Anzeichen hierfür konnten am PTCDA-HOMO bei einer Photonenenergie von 27 eV und s-Polarisation detektiert werden. Darüber hinaus kann die Näherung des Photoelektronenendzustands als ebene Welle den beobachteten zirkularen Dichroismus am HOMO und LUMO von PTCDA nicht erklären. Erst in der Erweiterung durch eine Partialwellenzerlegung des Photoelektronenendzustands tritt ein dichroisches Signal in der theoretischen Beschreibung auf. Für das delokalisierte pi-Elektronensystem von PTCDA ist aber selbst diese Verfeinerung noch nicht ausreichend, um das Experiment korrekt beschreiben und weitere Eigenschaften vorhersagen zu können. Qualitativ lassen sich die Veränderungen im CDAD bei der Transformation um 90° für HOMO und LUMO mit einem gruppentheoretischen Ansatz verstehen. Damit ist es möglich, den molekularen Zuständen ihre irreduzible Darstellung zuzuweisen, worüber sich für PTCDA die Verteilung der quantenmechanischen Phase rekonstruieren lässt. Dies ist deshalb äußerst bemerkenswert, da üblicherweise in physikalischen Experimenten nur die Intensität und keine Informationen über die Phase messbar sind. Damit können die Photoemissionsmessungen im k||-Raum vollständig in den Realraum transformiert werden, wodurch die laterale Ortsinformation über die höchsten besetzen Molekülorbitale von PTCDA zugänglich wird. Neben der Bestimmung der molekularen Orbitale, deren Struktur von der Anordnung der Atome im Molekül dominiert wird, enthält die winkelaufgelöste Photoemission Informationen über die Adsorbat-Substrat-Wechselwirkung. Für hoch geordnete Monolagen ist es möglich, die verschiedenen Verbreiterungsmechanismen zu trennen und zu analysieren. Bei den untersuchten Systemen sind die Verbreiterungen aufgrund von unterschiedlichen Adsorptionsplätzen oder Probeninhomogenitäten ebenso wie die experimentelle Auflösung der 2D-Analysatoren vernachlässigbar gegenüber Lebensdauereffekten und evtl. Verbreiterung aufgrund von Dispersionseffekten. Bereits bei den äußerst schwach wechselwirkenden Systemen Coronen auf Ag(111) und Au(111) unterscheiden sich die beiden Systeme in ihrer Lorentzverbreiterung beim HOMO. In erster Näherung lässt sich dies auf eine Lebensdauer des entstandenen Photolochs zurückführen, welches je nach Stärke der Substratkopplung unterschiedlich schnell mit Substratelektronen aufgefüllt werden kann. Die Lorentzbreite als Indikator für die Wechselwirkung bzw. Hybridisierungsstärke zeigt für die Systeme mit Ladungstransfer vom Substrat in das Molekül eine sehr viel größere Verbreiterung. Zum Beispiel beträgt die Lorentzbreite des LUMO für NTCDA/Ag(110) FWHM=427 meV, und somit eine mehr als fünfmal so große Verbreiterung als für das HOMO von Coronen/Au(111). Diese starke Verbreiterung geht im Fall von NTCDA/Ag(110) wie auch bei den untersuchten Systemen NTCDA/Cu(100) und PTCDA/Ag(110) einher mit einem Ladungstransfer vom Substrat ins Molekül, sowie mit der Ausbildung eines zusätzlichen charakteristischen Signals in der Winkelverteilung des LUMO, dem Hybridisierungszustand bei kx,y=0Å-1. Die Intensität dieses Zustands korreliert bei den Systemen NTCDA auf Cu(100) bzw. auf Ag(110) jeweils mit der Lorentzbreite des LUMO-Zustands. Die Hybridisierung zwischen Molekül und Substrat hat noch weitere Auswirkungen auf die beobachtbaren physikalischen Eigenschaften. So führt die starke Hybridisierung mit dem Substrat wiederum dazu, dass sich die intermolekulare Dispersion für die Elektronen im LUMO-Zustand deutlich verstärkt. Der direkte Überlapp der Wellenfunktionen ist im System PTCDA/Ag(110) laut DFT-Rechnungen relativ klein und führt lediglich zu einer Bandbreite von 60 meV. Durch die Hybridisierung mit den delokalisierten Substratbändern erhöht sich der Grad der Delokalisierung im LUMO-Zustand, d.h. die Bandbreite steigt auf 230 meV, wie das Experiment bestätigt. Im Gegensatz zu früheren STM/STS-basierten Messungen [Temirov2006] kann mit der Kombination aus DFT-Rechnung und ARPES-Experiment eindeutig nachgewiesen werden, dass das Substrat im Fall von PTCDA/Ag(110) die Bandbreite verstärken kann, sodass sich die effektive Masse der Lochladungsträger von meff=3,9me auf meff=1,1me reduziert. Im Blick auf die eingangs gestellte Frage, ob sich molekulare Adsorbate eher wie isolierte Moleküle oder als periodische Festkörper beschreiben lassen, kommt diese Arbeit auf ein differenziertes Ergebnis. In den Impulsverteilungen, die sich aus der Form der molekularen Wellenfunktionen ableiten lassen, spiegelt sich eindeutig der isolierte molekulare Charakter wieder. Dagegen zeigt sich in der Energiedispersion E(k||) ein delokalisierter, blochartiger Charakter, und es konnte demonstriert werden, dass es zu einem Vermischen von Metall- und Molekülwellenfunktionen kommt. Molekulare Adsorbate sind also beides, isolierte Moleküle und zweidimensionale Kristalle mit delokalisierten Zuständen. N2 - This work demonstrates the versatility of angular resolved photoemission (ARPES) in extracting fundamental properties of molecular condensates. With the technique proposed by Peter Puschnig et al., ARPES intensities of aromatic molecules can be linked to the absolute square of the fourier transformed molecular orbital. This allows experimentally identifying individual orbitals and understanding different physical mechanisms at the interface between an organic layer and a metal. This technique shows a clear agreement between theoretical intensity distributions, as e.g. derived from density functional theory (DFT), and the measurements on systems like coronene and HBC. Opposite to that, deviations occur on PTCDA and NTCDA for both local and semilocal density functionals, is s-polarized light is used. Additional measurements with different polarisation directions show, that relaxation effects in the final state lead to a mixing of the N-particle initial state with the N-1-particle final state. This phenomenon can be described theoretically within the framework of Dyson orbitals, in an approximate way already by introducing self-interaction corrected density functionals. Additional deviations from the simple approximation of the photoelectron by a plane wave can be made visible with circular polarised light. For the PTCDA HOMO and LUMO, circular dichroism appears in the angular distribution of the photoemission intensity, an effect that is by definition not included in the plane wave approximation. A refined approximation given by the partial wave expansion of the final state shows a distinct dichroism of both the HOMO and LUMO. But apparently this approximation is not able to describe the detailed circular dichroism angular distribution. In the future, this might be possible by applying the Independent Atomic Center (IAC) approximation including multiple intramolecular scattering. The origin of the dichroic signal can be elucidated by measurements with different incidence directions and applying group theory. The changes in the dichroism signal of the HOMO and LUMO upon rotation by 90° is different indicating on different irreducible representations for both states. This paves the way to reconstruct the intramolecular phase distribution for the rather simple PTCDA HOMO and LUMO. Access to this distribution is usually hindered by the measurement process itself due to the absolute square in the evaluation of the photoemission matrix elements. And finally with the knowledge of the intensity and the phase a transformation of the HOMO and LUMO to real space is possible. Next to the measurement of individual molecular orbitals, ARPES contains signatures from the molecule substrate interaction. For a unique identification of the several interaction mechanisms a commensurate lattice of molecules is indispensable. Otherwise different adsorption sites would sum up to a broad photoemission signal, both in energy and momentum direction. For the commensurate systems of coronene or HBC on the Ag(111) and Au(111) surfaces, this prerequisite is fulfilled. The analysis of the peak shape shows different Lorentzian broadenings of the adiabatic vibronic transition of the HOMO. This width can be approximately correlated to the lifetime of the photo hole. Therefor a stronger molecule metal interaction leads to a faster decay of the photo hole on the molecule and consequently to broader lorentzian line width. For example the lorentzian width of the hybridized NTCDA on Ag(110) is of FWHM=427 meV and therewith five times larger than the rather weakly interacting coronene on Au(111). The strong interaction for NTCDA on Ag(110) but also for the investigated systems NTCDA on Cu(100) and PTCDA on Ag(110) goes along with charge transfer from the substrate to the molecule, i.e. the LUMO gets filled for the molecules in the first layer. Moreover a hybridization occurs between the metal and the molecule resulting in an additional contribution to the LUMO in the momentum distribution at kx,y=0Å-1. In the direct comparison of the NTCDA/Ag(110) and NTCDA/Cu(100) adsorption systems, this intensity of this contribution can be linked to the interaction strength deduced from the lorentzian width of the respective LUMO. The hybridization has even more consequences on this interface system. The observable intermolecular band dispersion gets drastically enhanced due to the increased interaction strength mediated by the molecule substrate hybridization. The direct overlap of the PTCDA LUMO wave function is according to the DFT calculation rather small leading to a band width of only 60 meV. Opposite to that, the experiment as well as the calculation for a PTCDA layer adsorbed on a silver slab show a band width of 230 meV, which can only be explained by the additional adsorbate. And opposite to previous STM/STS measurements [Temirov2006] the observed substrate mediated band width enhancement is clearly observed for a molecular state, whose effective mass is reduced by this mechanism from meff=3,9me to meff=1,1me. In conclusion, this work demonstrates how the properties of electrons in molecules and at interfaces to a metal can be detected and characterised by the photoemission technique. If these systems are rather characterized by localized molecular orbitals than by delocalized bloch waves, depends on the individual properties. On the one hand the momentum dependency of the photoemission intensity of indivdual orbitals match nearly perfect the calculation on isolated molecules. On the other hand, the momentum dependent binding energies E(k||) show a bloch-like character, whose band width is amplified by the substrate interaction. This means, the molecular adsorbate is both, molecules and a 2D-crystal with delocalized states. KW - Organisches Molekül KW - Adsorbat KW - ARPES KW - Organische Moleküle KW - Hochgeordnete Monolagen KW - Molekülphysik KW - Festkörperphysik KW - Perylendianhydrid Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-95265 ER -