TY - THES A1 - Bauernfeind, Maximilian Josef Xaver T1 - Epitaxy and Spectroscopy of Two-Dimensional Adatom Systems: the Elemental Topological Insulator Indenene on SiC T1 - Epitaxie und Spektroskopie zweidimensionaler Adatom Systeme: der elementare Topologische Isolator Indenene auf SiC N2 - Two-dimensional (2D) topological insulators are a new class of materials with properties that are promising for potential future applications in quantum computers. For example, stanene represents a possible candidate for a topological insulator made of Sn atoms arranged in a hexagonal lattice. However, it has a relatively fragile low-energy spectrum and sensitive topology. Therefore, to experimentally realize stanene in the topologically non-trivial phase, a suitable substrate that accommodates stanene without compromising these topological properties must be found. A heterostructure consisting of a SiC substrate with a buffer layer of adsorbed group-III elements constitutes a possible solution for this problem. In this work, 2D adatom systems of Al and In were grown epitaxially on SiC(0001) and then investigated structurally and spectroscopically by scanning tunneling microscopy (STM) and photoelectron spectroscopy. Al films in the high coverage regime \( (\Theta_{ML}\approx2\) ML\( ) \) exhibit unusually large, triangular- and rectangular-shaped surface unit cells. Here, the low-energy electron diffraction (LEED) pattern is brought into accordance with the surface topography derived from STM. Another Al reconstruction, the quasi-one-dimensional (1D) Al phase, exhibits a striped surface corrugation, which could be the result of the strain imprinted by the overlayer-substrate lattice mismatch. It is suggested that Al atoms in different surface areas can occupy hexagonal close-packed and face-centered cubic lattice sites, respectively, which in turn lead to close-packed transition regions forming the stripe-like corrugations. On the basis of the well-known herringbone reconstruction from Au(111), a first structural model is proposed, which fits well to the structural data from STM. Ultimately, however, thermal treatments of the sample could not generate lower coverage phases, i.e. in particular, a buffer layer structure. Strong metallic signatures are found for In high coverage films \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) by scanning tunneling spectroscopy (STS) and angle-resolved photoelectron spectroscopy (ARPES), which form a \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \) surface reconstruction. In all these In phases electrons follow the nearly-free electron model. Similar to the Al films, thermal treatments could not obtain the buffer layer system. Surprisingly, in the course of this investigation a triangular In lattice featuring a \( (1\times1) \) periodicity is observed to host massive Dirac-like bands at \( K/K^{\prime} \) in ARPES. Based on this strong electronic similarity with graphene at the Brillouin zone boundary, this new structure is referred to as \textit{indenene}. An extensive theoretical analysis uncovers the emergence of an electronic honeycomb network based on triangularly arranged In \textit{p} orbitals. Due to strong atomic spin-orbit coupling and a comparably small substrate-induced in-plane inversion symmetry breaking this material system is rendered topologically non-trivial. In indenene, the topology is intimately linked to a bulk observable, i.e., the energy-dependent charge accumulation sequence within the surface unit cell, which is experimentally exploited in STS to confirm the non-trivial topological character. The band gap at \( K/K^{\prime} \), a signature of massive Dirac fermions, is estimated by ARPES to approximately 125 meV. Further investigations by X-ray standing wave, STM, and LEED confirm the structural properties of indenene. Thus, this thesis presents the growth and characterization of the novel quantum spin Hall insulator material indenene. N2 - Zweidimensionale (2D) topologische Isolatoren sind eine neue Materialklasse mit vielversprechenden Eigenschaften für potenzielle zukünftige Anwendungen in Quantencomputern. Stanene stellt hier beispielsweise einen möglichen Kandidaten für einen topologischen Isolator dar. Diese 2D-Schicht besteht aus Sn-Atomen, angeordnet in einem hexagonalen Gitter. Allerdings weist dieses Gitter ein relativ fragiles Niederenergiespektrum und eine empfindliche Topologie auf. Um Stanene daher in der topologisch nicht-trivialen Phase experimentell realisieren zu können, muss ein geeignetes Substrat gefunden werden, das Stanene aufnehmen kann, ohne die topologischen Eigenschaften zu beeinträchtigen. Eine Heterostruktur aus einem SiC-Substrat mit einer Pufferschicht aus adsorbierten Gruppe-III Elementen stellt hier eine mögliche Lösung für dieses Problem dar. Im Hinblick darauf wurden für diese Arbeit 2D-Adatomsysteme aus Al und In epitaktisch auf SiC(0001) gewachsen und mittels Rastertunnelmikroskopie (engl.: scanning tunneling microscopy, STM) und Photoelektronenspektroskopie strukturell und spektroskopisch untersucht. Al-Schichten mit hoher Bedeckung \( (\Theta_{ML}\approx2\) ML\( ) \) weisen ungewöhnlich große, dreieckig und rechteckig geformte Oberflächeneinheitszellen auf. Hierbei wird das Beugungsmuster der niederenergetischen Elektronenbeugung (engl.: low-energy electron diffraction, LEED) mit der aus STM abgeleiteten Oberflächentopographie in Einklang gebracht. Eine andere Al-Rekonstruktion, die quasi-eindimensionale (1D) Al-Phase, zeigt eine gestreifte Oberflächenkorrugation, die ein Ergebnis der Verspannung durch die Fehlanpassung des Al-Gitters auf dem Substratgitter sein könnte. Es wird vorgeschlagen, dass Al-Atome in verschiedenen Oberflächenbereichen sowohl jeweils hexagonal-dichtgepackte als auch kubisch flächenzentrierte Gitterplätze einnehmen können. In Übergangsregionen zwischen beiden Bereichen erzeugt dies dicht gepackte Al-Atome, die wiederum die streifenartigen Korrugationen hervorrufen. Auf der Basis der bekannten Fischgrätenrekonstruktion von Au(111) wird ein erstes Strukturmodell vorgeschlagen, das gut mit strukturellen STM-Daten übereinstimmt. Letztendlich konnten jedoch durch thermische Behandlungen der Probe keine Phasen mit geringerer Bedeckung, das heißt insbesondere die Pufferschichtstruktur, erzeugt werden. In-Hochbedeckungsphasen \( (\Theta_{ML}\approx3\) to \(2\) ML\() \) weisen ein ausgeprägtes metallisches Verhalten auf in der Rastertunnelspektroskopie (engl.: scanning tunneling spectroscopy, STS) und winkelaufgelösten Photoelektronenspektroskopie (engl.: angle-resolved photoelectron spectroscopy, ARPES). Zudem bilden diese Phasen eine \( (7\times7) \), \( (6\times4\sqrt{3}) \), and \( (4\sqrt{3}\times4\sqrt{3}) \)-Oberflächenrekonstruktion aus. In all diesen Phasen folgen die Elektronen dem Modell der quasifreien Elektronen. Ähnlich zu den Al-Filmen konnte auch hier nach thermischen Behandlungen der Probe keine Pufferschichtstruktur erzeugt werden. Überraschenderweise tritt im Laufe dieser Untersuchung ein Dreiecksgitter aus In-Atomen mit einer \( (1\times1) \)-Periodizität auf, das bei \( K/K^{\prime} \) massive Dirac-artige Bänder in ARPES zeigt. Aufgrund der starken Ähnlichkeit mit der Graphene-Bandstruktur am Brillouinzonenrand, wird dieses neuartige Materialsystem \textit{Indenene} benannt. Eine umfangreiche theoretische Untersuchung legt die Entstehung eines elektronischen Honigwabennetzwerks offen, dass sich aufgrund von dreieckig angeordneten In \textit{p}-Orbitalen bildet. Durch starke atomare Spin-Bahn-Wechselwirkung und einen vergleichsweisen schwachen substratinduzierten Inversionssymmetriebruch in der Ebene, ist dieses Materialsystem topologisch nicht-trivial. In Indenene ist die Topologie eng mit einer Volumenobservablen, genauer die energieabhängige Ladungsakkumulationsequenz innerhalb der Oberflächeneinheitszelle, verknüpft. Diese Sequenz wird mittels STS experimentell ausgenutzt, um den topologisch nicht-trivialen Charakter zu bestätigen. Die Bandlücke bei \( K/K^{\prime} \), charakteristisch für massive Dirac-Fermionen, wird mittels ARPES auf ungefähr 125 meV abgeschätzt. Weitere Untersuchungen basierend auf stehenden Röntgenwellen, STM, und LEED bestätigen die strukturellen Eigenschaften von Indenene. Dementsprechend wird in dieser Arbeit dasWachstum und auch die Charakterisierung des neuartigen Quanten Spin Hall Isolators Indenene vorgestellt. KW - Dreiecksgitter KW - Monoschicht KW - Indium KW - Topologischer Isolator KW - Siliciumcarbid KW - Monolage KW - Siliziumkarbid KW - STM KW - Triangular lattice KW - Monolayer KW - Silicon carbide KW - ARPES KW - Rastertunnelmikroskop Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311662 ER - TY - THES A1 - Kasper, Christian Andreas T1 - Engineering of Highly Coherent Silicon Vacancy Defects in Silicon Carbide T1 - Erzeugung hochkohärenter Silizium Fehlstellen in Siliziumkarbid N2 - In this work the creation of silicon vacancy spin defects in silicon carbide with predictable properties is demonstrated. Neutron and electron irradiation was used to create silicon vacancy ensembles and proton beam writing to create isolated vacancies at a desired position. The coherence properties of the created silicon vacancies as a function of the emitter density were investigated and a power-law function established. Sample annealing was implemented to increase the coherence properties of existing silicon vacancies. Further, spectral hole burning was used to implement absolute dc-magnetometry. N2 - In dieser Arbeit wird die Erzeugung von Silizium Fehlstellen in Siliziumkarbid mit vorhersagbaren Eigenschaften nachgewiesen. Neutronen- und Elektronenbestrahlung wurden zur Erzeugung von Ensembles von Silizium Fehlstellen verwendet, während isolierte Fehlstellen an einer gewünschten Position mit Hilfe eines Protonenstrahls erzeugt wurden. Die Kohärenz der erzeugten Silizium Fehlstellen wurde in Abhängigkeit der Emitterdichte untersucht und eine Gesetzmäßigkeit hierfür eingeführt. Um die Kohärenz der Silizium Fehlstellen zu erhöhen, wurden Annealing Experimente durchgeführt. Des Weiteren wurde spektrales Holeburning verwendet, um absolute DC-Magnetometrie nachzuweisen. KW - Störstelle KW - Siliciumcarbid KW - Kohärenz KW - Irradiation KW - Color Center KW - Spin defect KW - Bestrahlung KW - Farbzentrum KW - Spin Defekt Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237797 ER - TY - THES A1 - Brockmann, Dorothea E. R. T1 - Gefüge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften T1 - Structure simulations on non-oxide ceramics: correlation between microstructure and macroscopic properties N2 - Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufwändig und kostenintensiv. Simulationen hingegen können die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gefügekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverlässigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die häufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten können. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen Körnern, die Nebenphase erstarrt während der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosität von AlN und Si3N4 wird als vernachlässigbar angesehen und in den Simulationen nicht berücksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngröÿenverteilung. Durch Infiltration mit flüssigem Silicium wurden die Hohlräume zwischen den Körnern aufgefüllt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zunächst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (Wärmeleitfähigkeit, Elastizitätsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gefügen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gefügeparametern eine gute Übereinstimmung. Für die makroskopischen Eigenschaften wird auf der Basis einer ausführlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute Übereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation können damit erklärt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der Wärmeleitfähigkeit bewirken. Nachdem die Gültigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die Wärmeleitfähigkeit, den Elastizitätsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenlänge der keramischen Körner verändert. Bei den AlN-Keramiken wird zusätzlich der Dihedralwinkel variiert, welcher Auskunft über den Benetzungsgrad der Flüssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverhältnis der langgezogenen Si3N4-Körner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den größten Einfluss auf die Eigenschaften der Keramik hat, während die übrigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualität der Simulationen zu überprüfen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse für die Wärmeleitfähigkeit und den Elastizitätsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegenüber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierfür werden die Wärmeleitfähigkeit, der Elastizitätsmodul und die Poisson-Zahl der Phasen getrennt voneinander über einen größeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abhängt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgeführten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen können die Architektur des Gefüges simuliert und die Eigenschaften von Keramiken für individuelle Anwendungen berechnet werden. Dies ist die Basis für die Produktion von maßgeschneiderten Keramiken. Zudem können mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht möglich ist. N2 - Experimental improvement of macroscopic properties (e. g. thermal or mechanical properties) of ceramics require countless experiments and are therefore costly in terms of time and money. However, simulations use the correlation of microstructure and macroscopic properties to calculate properties of any microstructure. Until now, simulations usually use oversimplified models, which only roughly reproduce a ceramics' microstructure and therefore do not give reasonable results. In the paper on hand, the microstructure-property-correlation of the three most important non-oxide-ceramics (AlN, Si3N4, SiC) is analysed. These three types of ceramic represent the most important types of microstructures, which exist for nonoxidic ceramics. For each type of ceramic, two different samples are examined. All three ceramic types used are two-phase-ceramics. The primary phase of AlN and Si3N4 is built of the ceramic grains and the secondary phase solidifies from the added sinter additives. The remaining porosity of AlN and Si3N4 is regarded to be negligible and is therefore not considered in the simulations. The SiC-samples are ceramics with a bimodal grain size distribution. The spaces in between the grains are filled by infiltration with liquid silicon to get Si-SiC-samples free of pores. At first, by employing simulations, microstructures are generated, which are close to the samples' microstructures. These models are verified by comparing them with two-dimensional scanning electron micrographs. Macroscopic properties (thermal conductivity, Young's modulus, Poisson's Ratio) of the ceramics are calculated by finite element simulations and then compared to experimental measurements on the samples. Analyzing the microstructures of the computer-generated models and the samples shows good agreement in the pattern matching as well as quantitatively in the microstructures parameters. Also for the macroscopic properties good comparison between measured and simulated properties was reached, based on an elaborate literature research on material parameters of all phases involved. Occurring discrepancies between experiment and simulations are assumed to be due to impurities in the sample. From literature it is known that impurities lead to a decline in thermal conductivity. As the models are validated, the influence of characteristic microstructure parameters and material properties of the phases on the thermal conductivity, Young's modulus and Poisson's ratio of ceramics are analysed. Therefore some microstructure parameters of the models of AlN and Si3N4 are deviated from the parameters of the samples. For both ceramic types the volume fractions of both phases and the average chord length of the grains are varied. At the AlN models, the dihedral angle is varied as well, which provides information about the wetting behaviour of the secondary phase; at the Si3N4 models, the aspect ratio of the elongated Si3N4 grains are of importance and hence analysed. It turns out that the volume fractions of the phases have the most significant influence on the ceramics' properties, whereas the other microstructure parameters are less important. To check the quality of the simulations, the simulation data of AlN with different volume fractions is compared to established models from literature ("rule of mixture" and model according to Ondracek). All results from the simulations are within the upper and lower bounds of both models. In comparison with these models, an improvement was achieved. For all three ceramic types, the influence of the material properties of the main and the secondary phase on the ceramics' properties is investigated. Therefore, the phases' thermal conductivity, Young's modulus and Poisson's ratio are separately from each other varied over a large range. It turns out that the influence of a component's property on the property of the ceramic depends on the ceramic type and the volume fraction of the secondary phase. On models of all three ceramic types, the influence of the components' material properties on the macroscopic properties of the ceramic is analysed. Based on these simulations, the architecture of microstructures can be simulated and properties of random ceramics for individual purposes can by calculated. By this, it is possible to produce customised ceramics. Additionally, with the validated microstructure models, the properties of unknown mixed phases can be calculated, which is usually not possible in experiments. KW - Aluminiumnitrid KW - Siliciumcarbid KW - Siliciumnitrid KW - Finite-Elemente-Methode KW - Wärmeleitfähigkeit KW - Mikrostrukturmodellierung KW - Elastizitätsmodul KW - inverse Simulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157255 ER - TY - THES A1 - Simin, Dmitrij T1 - Quantum Sensing with Highly Coherent Spin Centers in Silicon Carbide T1 - Quantensensorik mit hochkohärenten Spinzentren in Siliciumcarbid N2 - In the present work, the energetic structure and coherence properties of the silicon vacancy point defect in the technologically important material silicon carbide are extensively studied by the optically detected magnetic resonance (ODMR) technique in order to verify its high potential for various quantum applications. In the spin vacancy, unique attributes are arising from the C3v symmetry and the spin-3/2 state, which are not fully described by the standard Hamiltonian of the uniaxial model. Therefore, an advanced Hamiltonian, describing well the appearing phenomena is established and the relevant parameters are experimentally determined. Utilizing these new accomplishments, several quantum metrology techniques are proposed. First, a vector magnetometry scheme, utilizing the appearance of four ODMR lines, allows for simultaneous detection of the magnetic field strength and the tilting angle of the magnetic field from the symmetry axis of the crystal. The second magnetometry protocol utilizes the appearance of energetic level anticrossings (LAC) in the ground state (GS) energy levels. Relying only on the change in photoluminescence in the vicinity of this GSLACs, this all-optical method does not require any radio waves and hence provides a much easier operation with less error sources as for the common magnetometry schemes utilizing quantum points. A similar all-optical method is applied for temperature sensing, utilizing the thermal shift of the zero field splitting and consequently the anticrossing in the excited state (ES). Since the GSLACs show no dependence on temperature, the all-optical magnetometry and thermometry (utilizing the ESLACs) can be conducted subsequently on the same defect. In order to quantify the achievable sensitivity of quantum metrology, as well as to prove the potential of the Si-vacancy in SiC for quantum processing, the coherence properties are investigated by the pulsed ODMR technique. The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are thoroughly analyzed for their dependence on the external magnetic field and temperature. For actual sensing implementations, it is crucial to obtain the best signal-to-noise ratio without loss in coherence time. Therefore, the irradiation process, by which the defects are created in the crystal, plays a decisive role in the device performance. In the present work, samples irradiated with electrons or neutrons with different fluences and energies, producing different defect densities, are analyzed in regard to their T1 and T2 times at room temperature. Last but not least, a scheme to substantially prolong the T2 coherence time by locking the spin polarization with the dynamic decoupling Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is applied. N2 - In der vorliegenden Arbeit werden die energetische Struktur und die Kohärenzeigenschaften der Silizium Fehlstelle in dem technologisch relevanten Material Siliciumcarbid mit Hilfe der optisch detektierten Magnetresonanz (ODMR) Technik extensiv analysiert, um ihr außerordentliches Potential für verschiedene quanten-mechanische Anwendungen zu untermauern. Aus der C3v Symmetrie und dem 3/2 Spinsystem des Defekts entstehen einzigartige Attribute, die nur teilweise durch den Standard Hamiltonoperator des Modells einer einachsigen Symmetrie wahrheitsgemäß beschrieben werden. Aus diesem Grund wird ein weiterentwickelter Hamiltonoperator aufgestellt, welcher die auftretenden Eigenschaften genau wiedergibt. Aus experimentellen Messungen werden anschließend seine Parameter bestimmt. Das nun vorliegende genaue Verständnis der auftretenden Phänomene wird dazu genutzt, diverse Methoden zur Quantensensorik auszuarbeiten. Zuerst wird ein Schema für Vektormagnetometrie aufgestellt, welches sich das Auftreten von vier ODMR Linien zunutze macht. Die Methode ermöglicht simultane Detektion, sowohl von der Magnetfeldstärke, als auch von dem Winkel zwischen der Magnetfeldrichtung und der Symmetrieachse des Kristalls. Das zweite Magnetometrie protokoll nutzt das Auftreten von energetischen anticrossings (level anticrossing, LAC) im Grundzustand (ground state, GS). Durch das Verfolgen der Änderung der Photolumineszenz in der Nähe dieser GSLACs, braucht diese rein optische Technik keine Radiowellen und ist dementsprechend viel leichter umzusetzen und bietet weniger Fehlerquellen als die üblichen Magnetometriemethoden an Quantenpunkten. Eine ähnliche, rein optische Methode wird auch für Temperaturmessungen vorgestellt, welche auf der thermisch induzierten Verschiebung der Nullfeldaufspaltung und somit auch der anticrossings im angeregten Zustand (excited state, ES) basiert. Da die GSLACS keine Temperaturabhängigkeit zeigen, können die rein optischen Methoden zur Magnetfeld- und Temperaturmessung nacheinander am selben Defekt erfolgen. Um die erreichbare Sensitivität der Quantenmetrologie zu quantifizieren und auch um das Potential der Si-Vakanzen für Quantencomputing zu demonstrieren, werden die Kohärenzeigenschaften mit Hilfe der gepulsten ODMR Technik analysiert. So werden die Spin-Gitter Relaxationszeit T1 und die Spin-Spin Relaxationszeit T2 eingehend analysiert und deren Abhängigkeit von einem externen Magnetfeld und der Temperatur aufgestellt. Für tatsächliche Implementierung in einem Sensor, ist es entscheidend ein Optimum zwischen dem Signal-Rausch-Verhältnis und der Kohärenzlänge zu etablieren. Deswegen spielt die Kristallbestrahlung, durch die die Defekte erzeugt werden, eine wichtige Rolle für die Leistungsfähigkeit des Endgerätes. In der vorliegenden Arbeit werden unterschiedlich bestrahlte Proben, nämlich einmal mit Elektronen und einmal mit Neutronen unterschiedlicher Energie und mit unterschiedlichen Bestrahlungsdosen, analysiert. Anschließend wird eine Methode zur substantiellen Verlängerung der T2 Kohärenzzeit durch das locking der Spinpolarisation mit der Carr-Purcell-Meiboom-Gill (CPMG) Pulssequenz durchgeführt. KW - Siliciumcarbid KW - ODMR-Spektroskopie KW - Gitterbaufehler KW - silicon vacancy KW - pulsed ODMR KW - quantum metrology KW - quantum sensing KW - Siliciumvakanz KW - Silicium Fehlstelle KW - Quantensensorik KW - Feldstärkemessung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156199 ER - TY - THES A1 - Fuchs, Franziska T1 - Optical spectroscopy on silicon vacancy defects in silicon carbide T1 - Optische Spektroskopie an Silizium-Fehlstellen in Siliziumkarbid N2 - This work sheds light on different aspects of the silicon vacancy in SiC: (1) Defect creation via irradiation is shown both with electrons and neutrons. Optical properties have been determined: the excitation of the vacancy is most efficient at excitation wavelengths between 720nm and 800nm. The PL decay yields a characteristic excited state lifetime of (6.3±0.6)ns. (2) Defect engineering, meaning the controlled creation of vacancies in SiC with varying neutron fluence. The defect density could be engineered over eight orders of magnitude. On the one hand, in the sample with highest emitter density, the huge PL signal could even be enhanced by factor of five via annealing mechanisms. On the other hand, in the low defect density samples, single defects with photostable room temperature NIR emission were doubtlessly proven. Their lifetime of around 7ns confirmed the value of the transient measurement. (3) Also electrical excitation of the defects has been demonstrated in a SiC LED structure. (4) The investigations revealed for the first time that silicon vacancies can even exist SiC nanocrystals down to sizes of about 60 nm. The defects in the nanocrystals show stable PL emission in the NIR and even magnetic resonance in the 600nm fraction. In conclusion, this work ascertains on the one hand basic properties of the silicon vacancy in silicon carbide. On the other hand, proof-of-principle measurements test the potential for various defect-based applications of the vacancy in SiC, and confirm the feasibility of e.g. electrically driven single photon sources or nanosensing applications in the near future. N2 - In dieser Arbeit werden verschiedene Aspekte der Silizium-Fehlstelle in SiC beleuchtet: (1) Die Erzeugung der Defekte durch Bestrahlung, sowohl mit Elektronen als auch Neutronen. Einige optische Eigenschaften wurden ermittelt: die Anregung der Fehlstelle ist im Bereich von 720nm bis 800nm am effizientesten. Das Abklingen der PL zeigt eine charakteristische Lebensdauer des angeregten Zustands von (6.3±0.6)ns. (2) Maßschneidern der Defektdichte meint die kontrollierte Erzeugung von Defekten durch variablen Neutronenfluss. Hier konnte die Defektdichte gezielt über acht Größenordnungen verändert werden. Auf der einen Seite, in der Probe mit der höchsten Defektdichte, konnte das ohnehin schon große PL Signal noch um den Faktor fünf durch Temperprozesse erhöht werden. Auf der anderen Seite konnten in den Proben mit geringer Defektdichte einzelne Defekte mit stabiler nahinfrarot Emission bei Raumtemperatur zweifelsfrei nachgewiesen werden. Ihre Lebensdauer von etwa 7ns bestätigt den Wert aus den transienten Messungen. (3) Auch die elektrische Anregung der Defekte in einer SiC LED Struktur konnte gezeigt werden. (4) Die Untersuchung zeigte zum ersten Mal, dass Silizium-Fehlstellen in SiC Nanokristallen bis hinunter zu einer Größe von ca. 60 nm existieren können. Die Defekte zeigen stabile PL Emission im Nahinfraroten und sogar Magnetresonanz in der 600 nm Fraktion. Zusammenfassend werden in dieser Arbeit zum Einen grundlegende Eigenschaften der Silizium-Fehlstelle in Siliziumkarbid herausgefunden. Zum Anderen können Messungen zur Machbarkeit von verschiedenen Anwendungen sowohl das Potenzial der Fehlstelle in SiC für defektbasierte Anwendungen aufzeigen, als auch die Umsetzbarkeit von z.B. elektrisch betriebenen Einzelphotonenquellen oder Nanosensoren in naher Zukunft bestätigen. KW - Siliciumcarbid KW - Gitterbaufehler KW - Optische Spektroskopie KW - Silicon carbide KW - Silicon vacancy KW - Optical spectroscopy KW - Magnetic resonance KW - Spin defect KW - physics KW - vacancy KW - spin KW - semiconductor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124071 ER - TY - THES A1 - Hain, Tilman Christian T1 - Entwicklung eines experimentellen Aufbaus zur Charakterisierung nanoskaliger Systeme mittels Fluoreszenzspektroskopie und -mikroskopie T1 - Development of an experimental setup for characterizing nanoscopic matter by means of fluorescence spectroscopy and fluorescence microscopy N2 - Die vorliegende Dissertation leistet einen Beitrag zur spektroskopischen Messmethodik nanoskaliger Strukturen. Im Mittelpunkt der Arbeit steht die Entwicklung und Erprobung eines spektrofluorimetrischen Aufbaus, mit dessen Hilfe ein aus Kohlenstoffnanoröhren und DNA-Oligomeren bestehendes supramolekulares Modellsystem einer optischen Untersuchung zugänglich gemacht wird. Die Vielseitigkeit der Messeinheit aus Mikroskop und Spektrometer wird an einer weiteren Substanzklasse untermauert. So wird das Emissionsverhalten von in Siliziumcarbidkristallen induzierten Defektzentren einer räumlich, spektral und zeitlich aufgelösten Charakterisierung unterzogen. Die zentrale Komponente des Spektrofluorimetrieaufbaus stellt eine Superkontinuumlichtquelle dar. In Verbindung mit einem elektronisch geregelten Filtermodul zur Wellenlängenselektion erlaubt sie die Durchführung von Photolumineszenz-Anregungsexperimenten. Im Gegensatz zu kommerziell erhältlichen Systemen, die überwiegend auf eine spektroskopische Charakterisierung gelöster oder kolloidal stabilisierter Substanzen abzielen, erlaubt der hier realisierte Aufbau auch die PL- mikroskopische Untersuchung kondensierter Proben, was durch die Epi-Bauweise auch opake Substrate einschließt. Der Einsatz von InGaAs-Sensoren weitet das Detektionsfenster auf den Nahinfrarotbereich aus, sowohl hinsichtlich des Kamera- als auch des Spektroskopiekanals. Anhand verschiedenartiger Kohlenstoffnanorohrproben, die entweder in flüssiger Phase dispergiert oder in festem Zustand als Film abgeschieden vorliegen, wird die Leistungsfähigkeit des PLE-Experiments unter Beweis gestellt. Neben der Zuordnung der Chiralitäten in polydispersen SWNT-Suspensionen wird dies auch durch die Untersuchung von Energietransferprozessen und die Studie von Umgebungseinflüssen demonstriert. Die Charakterisierung des DNA-SWNT-Modellsystems in mikrofluidischer Umgebung macht von der fluoreszenzmikroskopischen Detektionseinheit Gebrauch. Während die intrinsische Photolumineszenz der Nanoröhren sicherstellen soll, dass Letztere in ausreichender Anzahl auf den mikrostrukturierten Substraten vorhanden sind, wird die extrinsische Photolumineszenz der funktionalisierten Oligonukleotide als spektroskopisches Maß für die DNA-Konzentration herangezogen. Das hierbei beobachtete Agglomerationsverhalten der farbstoffmarkierten Oligomere geht mit einer lokal erhöhten Fluoreszenzintensität einher und erlaubt damit die quantitative Auswertung der auf PL-Einzelbildern basierenden Zeitserien. Zugleich wird damit eine Abschätzung der DNA-Belegung auf den Nanoröhren möglich. Im Falle der aus 16 alternierenden Guanin-Thymin-Einheiten bestehenden Basensequenz lösen sich nach Initiieren des Desorptionsvorgangs ein Großteil der Oligomere von der Nanorohroberfläche ab. Lediglich ein Fünftel bleibt in adsorbierter Form zurück, was sich jedoch für die Hybridstabilität als ausreichend erweist. Die Freisetzung weiterer Oligomere bleibt bei der Versuchstemperatur von 20 °C trotz der hohen Verdünnung aus, da aufgrund des größeren Interadsorbatabstands und der damit verbundenen Abnahme repulsiver Wechselwirkungen die Aktivierungsbarriere für ihre Desorption steigt. Die Stabilität der DNA-SWNT-Konjugate liegt demnach in ihrer kinetischen Inertheit begründet, die sie vor einer Reaggregation bewahrt. Die Studie der in Siliziumcarbid induzierten Fehlstellendefekte kann als Beleg für die breite Anwendbarkeit des spektrofluorimetrischen Aufbaus gelten. PL-Mikroskopaufnahmen zeigen hierbei, dass die Anzahl der Defektzentren mit der Bestrahlungsintensität kontrolliert werden kann – von einer kontinuierlichen Verteilung bei hohen Strahlungsintensitäten über heterogene Defektansammlungen bis hin zu Einzeldefektstellen bei niedrigen Strahlungsdosen. Letztere resultieren in beugungsbegrenzten Signaturen und erlauben damit eine Charakterisierung des abbildenden Systems sowie des Anregungsfokus. Anhand der PLE-Analyse lässt sich das Absorptionsmaximum abschätzen. Aussagen zur zeitlichen Entwicklung des Emissionsverhaltens werden durch TCSPC-Messungen erhalten. Die abschließende Untersuchung des Photonenflusses mit Hilfe von Korrelationsexperimenten nach Hanbury Brown-Twiss zeigt bei Raumtemperatur kein Auftreten von Photonantibunching. N2 - Within the scope of this dissertation, a contribution towards the spectroscopic investigation of nanomaterials has been made. The approach applied here is a spectrofluorometric one, which allows the optical characterization of an oligonucleotide/single-wall carbon nanotube comprised supramolecular model system. The flexibility of the developed setup is demonstrated by studying another class of nanoscale samples, that is defect centers in silicon carbide crystals. Their emission behavior is subject to a spacial, spectral and temporal analysis. The key role in the combined microscope and spectrograph assembly is held by a supercontinuum light source. With the help of this device, excitation measurements can be conducted by shifting the wavelength with an electronically driven filter accessory. In contrast to commercially available systems, which predominantly focus on a spectroscopic characterization of substances in solution or in colloidal suspension, it is also possible to carry out PL microscopic studies of condensed matter. Because of an epifluorescence configuration, the samples to be measured imply opaque substrates as well. Using complementary sensor materials including InGaAs arrays enlarges the accessible range of emission for both imaging and spectroscopy. Differently processed carbon nanotube samples, occurring in either dispersed or deposited form, serve as a benchmark in assessing the capability of the PLE setup established here. For instance, it can be used to assign chiralities in heterogeneous SWNT suspensions or to analyze energy transfer as well as the impact of varying colloidal conditions. The studies of the DNA-SWNT model system are accomplished through the use of fluorescence microscopy under microfluidic control. The intrinsic photoluminescence of carbon nanotubes can be exploited to estimate, to what extent they cover the lithographically treated silicon wafers. The extrinsic photoluminescence of functionalized oligonucleotides is used as a spectroscopic probe for DNA concentration measurements. Bright spots with distinct shape are observed and attributed to an agglomeration of dye-labeled oligomers. By recording time series of PL images, the locally enhanced emission signal in these discrete sites can be quantitatively analyzed, representing the progress of DNA adsorption on SWNTs. Based on a DNA sequence consisting of 16 alternating guanine-thymine moieties, the present experiments reveal the release of most of the oligonucleotides, when starting off the desorption process. Only one fifth of the initially adsorbed amount remains attached to the nanotube surface, without the modified environment affecting hybrid stability. Remarkably, an ongoing desorption does not take place at the test temperature of 20 °C in spite of the vast dilution applied. This circumstance can be explained by an increased distance between the residually adsorbed oligonucleotides, resulting in less pronounced repulsive forces between them. Consequently, the activation energy barrier for inducing further detachment is raised. In case of sufficiently long base compositions, this suggests that the stability of conjugates is founded in their kinetic inertness. The absence of continued desorption eventually prevents these DNA-SWNT hybrids from reaggregating. The investigation of vacancy defects in silicon carbide proves the broad applicability of the spectrofluorimetric setup. PL microscopic studies show that the amount of defect sites can be controlled by tuning electron irradiance. The corresponding defect pattern evolves from a continuous distribution towards discrete clusters. By lowering the exposure dose even more, single defects emerge showing diffraction-limited signatures, which can help to elucidate the imaging system as well as the excitation focus in more detail. PLE mapping and time-correlated single photon counting of the fluorescence decay provide insight in photophysical parameters, including the absorption maxium and the lifetime of the excited state. Studying the photon flux by means of correlation measurements according to Hanbury Brown-Twiss does not give rise to photon antibunching under ambient conditions. KW - Fluoreszenzspektroskopie KW - Fluoreszenzmikroskopie KW - Kohlenstoff-Nanoröhre KW - Oligonucleotide KW - Siliciumcarbid KW - PLE-Spektroskopie KW - DNA-SWNT-Konjugate KW - Sorptionsstudien KW - SiC-Fehlstellendefekte KW - Korrelationsfunktion zweiter Ordnung KW - PLE spectroscopy KW - DNA-SWNT hybrids KW - sorption studies KW - SiC vacancy defects KW - second-order correlation function Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116618 ER - TY - THES A1 - Kraus, Hannes T1 - Optically Detected Magnetic Resonance on Organic and Inorganic Carbon-Based Semiconductors T1 - Optisch detektierte Magnetresonanz an organischen und anorganischen kohlenstoffbasierten Halbleitern N2 - In dieser Arbeit werden drei verschiedene kohlenstoffbasierte Materialsysteme behandelt: (i) Organische Halbleiter und kleine Moleküle, in Kombination mit Fullerenen für Anwendungen in der organischen Photovoltaik (OPV), (ii) Halbleitende Einzelwand-Kohlenstoffnanoröhren und (iii) Siliziumkarbid (SiC), dessen Defekte erst seit kurzem als Kandidaten für Quantenapplikationen gehandelt werden. Alle Systeme wurden mit optisch detektierter Magnetresonanzspektroskopie (ODMR) untersucht. Im OPV-Kapitel, die intrinsischen Parameter und Orientierungen von Exzitonen mit hohem Spin wurden für die Materialsysteme P3HT, PTB7 und DIP untersucht. Speziell der Einfluss von Ordnung diesen organischen Systemen wurde diskutiert. Der zweite Teil des Kapitels beschäftigt sich mit Triplettgeneration mittels Elektronenrücktransfer im leistungsfähigen Materialsystem PTB7:PC71BM. Das Kohlenstoffnanoröhren-Kapitel zeigt zuert den ersten zweifelsfreien Nachweis von Triplettexzitonen in halbleitenden (6,5) Einzelwandkohlenstoffnanoröhren (SWNT), mittels ODMR-Spektroskopie. Ein Modell für die Anregungskinetik, die intrinsischen Parameter des Exzitons und Abhängigkeit von der Orientierung der Röhren wurden diskutiert. Der letzte Teil der Arbeit gilt Spinzentren in Siliziumkarbid. Nach einer kurzen Einführung in das Materialsystem wird die Spinmultiplizität für die V2 und V3 Siliziumfehlstellen, sowie eines Frenkelpaars und eines noch nicht zugeordneten Defekts (UD) in 6H SiC, weiterhin für die V2 Fehlstelle und das Frenkelpaar in 4H SiC, durchgängig zu S=3/2 festgestellt. Das spinpolarisierte Befüllen der 3/2-Zustände des Grundzustands der Siliziumfehlstellen erlaubt stimulierte Mikrowellenemission. Ausserdem wurde für UD und Frenkelpaar in 6H SiC eine große Temperaturabhängigkeit der Nullfeldparameter festgestellt, während die Siliziumfehlstellen temperaturunabhängig sind. Anwendung des UD und Frenkelpaars als Temperatursensor, und der Vakanzen als Vektormagnetometer wurden diskutiert. N2 - In this work, three different material systems comprising carbon were researched: (i) Organic polymers and small molecules, in conjunction with fullerene molecules for applications in organic photovoltaics (OPV), (ii) single walled semiconducting carbon nanotubes and (iii) silicon carbide (SiC), whose defect color centers are recently in the limelight as candidates for quantum applications. All systems were analyzed using the optically detected magnetic resonance (ODMR) spectroscopy. In the OPV chapter, first the intrinsic parameters and orientations of high spin excitons were analyzed in the materials P3HT, PTB7 and DIP. Specifically the influence of ordering in these organic systems was adressed. The second part of the OPV chapter is concerned with triplet generation by electron back transfer in the high-efficiency OPV material combination PTB7:PC71BM. The carbon nanotube chapter first shows the way to the first unambiguous proof of the existence of triplet excitons in semiconducting (6,5) single-walled carbon nanotubes (SWNT) by ODMR spectroscopy. A model for exciton kinetics, and also orientation and intrinsic parameters were propoesed. The last part of this work is devoted to spin centers in silicon carbide (SiC). After a brief introduction, the spin multiplicity of the V2 and V3 silicon vacancies, and also of a Frenkel pair and an unassigned defect UD in 6H SiC, and of the V2 vacancy and the Frenkel pair in 4H SiC, was shown to be S=3/2. The spin polarized pumping of the 3/2 manifold of the quartet ground state of the silicon vacancies allows stimulated microwave emission. Furthermore, in 6H SiC, the UD and Frenkel pair were shown to have a large dependence of their intrinsic zero field interaction parameters on the temperature, while the vacancies are temperature independent. The application of the UD and Frenkel pair as temperature sensor, and of the vacancies as a vector magnetic field sensor is discussed. KW - ODMR-Spektroskopie KW - Organischer Halbleiter KW - quantum center KW - Siliciumcarbid KW - Nanoröhre Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106308 ER - TY - THES A1 - Kimmig, Stefan T1 - Herstellung und Charakterisierung von SiC-Faser-verstärktem Kupfer zur Anwendung in Hochleistungswärmesenken T1 - Manufacturing and characterisation of SiC-fibre-reinforced copper in heat sink applications N2 - Die Wandmaterialien innerhalb des Plasmagefäßes zukünftiger Fusionsreaktoren sind teilweise extremen thermischen und mechanischen Belastungen ausgesetzt. Der thermisch höchstbelastete Bereich der Wand des Torusgefäßes ist der Divertor. Hier werden die anfallende Fusionsasche (Helium) und erodierte Wandpartikel aus dem Plasma entfernt, wodurch aufgrund erhöhter Teilchen-Wand-Interaktion Wärmeflüsse von bis zu 15 MW/m² erreicht werden. Wolfram gilt momentan als ideales Wandmaterial mit direktem Plasmakontakt (Plasma-Facing-Material, PFM) für diese Beanspruchungen. Unterhalb des PFM muss die Wärme möglichst effizient in das Kühlmedium übertragen werden. Im zukünftigen Experimentalreaktor ITER wird dafür eine Kupferlegierung (CuCrZr) verwendet, welche eine hohe Wärmeleitfähigkeit besitzt und für Temperaturen von bis zu 350°C unter fusionsrelevanten Bedingungen einsetzbar ist. In dieser Konfiguration kann ITER mit einer Kühlmitteltemperatur von 150°C betrieben werden. Zur kommerziellen Energiegewinnung ist dies unzureichend, da die thermische Effizienz durch eine deutliche Anhebung der Kühlmitteltemperatur verbessert werden muss. Wird der konventionelle Ansatz einer Wasserkühlung zu Grunde gelegt, ist das Ziel die Kühlmitteltemperatur auf mindestens 300°C anzuheben. In der Folge ist CuCrZr als Wärmesenkenmaterial nicht mehr einsetzbar, da verstärkte Alterung und Festigkeitsverlust im Material auftritt. Zusätzlich vergrößern sich die thermisch induzierten Spannungen in der Komponente mit höheren Temperaturen, durch unterschiedlich große thermische Ausdehnungskoeffizienten der beteiligten Materialien. Für höhere Temperaturen stellt faserverstärktes Kupfer eine mögliche Alternative dar. Die Kombination der hohen Wärmeleitfähigkeit der Kupfermatrix mit der hohen Steifigkeit und Festigkeit von Siliziumcarbidfasern soll die nötigen thermischen und mechanischen Eigenschaften des Wärmesenkenmaterials auch für Temperaturen über 350°C gewährleisten. Im Rahmen dieser Arbeit wurden zwei unterschiedlich hergestellte SiC-Verstärkungsfasertypen hinsichtlich ihrer Eignung für die Herstellung eines Kupfer-Matrix-Komposits (CuMMC) untersucht. Die Zielstellung für das CuMMC beinhaltet eine Festigkeit von 300 MPa bei 300°C sowie eine möglichst hohe Wärmeleitfähigkeit von über 200 W m-1 K-1. Beide Parameter werden stark von der Faserfestigkeit und der Anbindung zwischen Faser und Matrix beeinflusst. Die Wärmeleitfähigkeit durch das CuMMC wird von der Kupfermatrix dominiert, wodurch geringere Faservolumenanteile von Vorteil sind. Höhere Faserfestigkeit erfordert geringere Faseranteile zum Erreichen mechanischer Vorgaben, womit die erzielbare Wärmeleitfähigkeit des CuMMCs steigt. Die Faserfestigkeit wird durch Einzel-Faser- Zugversuche validiert. Darüber hinaus ist die Anbindung zwischen Faser und Matrix essentiell, um die optimale Verstärkungswirkung durch die Fasern im CuMMC zu erzielen. Zur Faser-Matrix-Anbindung werden für jeden Fasertyp unterschiedliche Zwischenschichtsysteme verwendet, die anschließend durch Einzelfaser-Push-Out-Versuche validiert werden. Sind die Voraussetzungen von Faserfestigkeit und Anbindung für einen Fasertyp erfüllt, wird dieser für die Herstellung eines unidirektional verstärkten CuMMCs verwendet, welches bezüglich seiner mechanischen und thermischen Eigenschaften charakterisiert wird. Die mechanische Charakterisierung des CuMMCs erfolgt durch Zugversuche und dehnungsgeregelte, zyklische Versuche, wobei der Fokus neben der Festigkeit auf der Plastifizierung, Verfestigung und Schädigung innerhalb des CuMMCs liegt. Die thermische Charakterisierung erfolgt anhand der Wärmeleitfähigkeitsbestimmung sowohl parallel, als auch transversal zur Faserrichtung. Die mechanischen und thermischen Eigenschaften werden in Abhängigkeit von Faservolumenanteil und Temperatur untersucht. Um den Einfluss von längeren Betriebsphasen unter hoher thermischer Belastung analysieren zu können, wird das CuMMC bei 550°C für 400 h ausgelagert und anschließend wiederum mittels Vergleich seiner mechanischen und thermischen Eigenschaften auf mögliche Schädigungen untersucht. Zur Begutachtung von Schliff- und Bruchflächen zur Schadensanalyse stehen als bildgebende Untersuchungsmethoden neben Lichtmikroskopen ebenso Rasterelektronenmikroskope (REM) zur Verfügung. N2 - The wall materials in future fusion reactors will be operating under extreme thermal and mechanical load conditions. The divertor region of such a device is the most severely loaded component. This part is exposed to heat fluxes of up to 15 MW m-² due to the impinging plasma particle flux. Tungsten is currently considered as the best choice for the plasmafacing- materials (PFM) in the divertor region. An efficient heat sink material is required underneath the PFM for sufficient heat transfer to the cooling channels. In the research reactor ITER a copper alloy (CuCrZr) is foreseen as heat sink material, which is able to withstand temperatures of up to 350°C, corresponding to a water coolant temperature of 150°C. For the commercial use of fusion energy an increase of the thermal efficiency is necessary by increasing the coolant temperature to over 300°C. This will cause higher stresses in the connection area between PFM and the heat sink due to different coefficients of thermal expansion combined with higher temperatures. The mechanical properties of CuCrZr are insufficient for these conditions and fibre reinforced copper metal matrix composites (CuMMC) are considered as an alternative material to strengthen the critical connection area between the heat sink and the PFM. The composite should combine the high heat conductivity of a copper matrix with the high stiffness and mechanical strength of silicon-carbide fibres (SiC-fibres). During this investigation SiC-fibres of two different production principles were studied regarding their usage for the manufacturing of a CuMMC. The main goals for the CuMMC are a tensile strength of 300 MPa combined with a heat conductivity of more than 200 W m-1 K-1. Both of these parameters are affected by the single fibre tensile strength and by the bonding between the fibres and the copper matrix. The achievable heat conductivity in the CuMMC depends on the fibre volume ratio within the composite. Higher fibre strength reduces the necessary fibre volume ratio and hence increases the heat conductivity of the CuMMC. The fibre strength was validated by single fibre tension tests. Furthermore, a good bonding between fibre and matrix is necessary to optimize the fibre reinforcement, which is based on load transfer between fibre and matrix. Therefore, both fibre types were coated with interlayer systems and the effectiveness of the bonding was validated by single fibre push-outtests. For those cases where fibre strength and bonding were sufficient, a unidirectional fibre reinforced CuMMC was manufactured, who’s mechanical and thermal properties were then characterised. The mechanical tests included tensile tests and strain-controlled cycling tests which gave information about strength, plasticity, hardening and the effect of damage within the CuMMC. To verify that the CuMMC heat sink material achieves the thermal requirements, heat conductivity measurements parallel and perpendicular to the fibre direction were performed. These characterizations were done as a function of fibre volume fraction in the CuMMC and temperature. To investigate the influence of long term exposure to operation temperatures, a heat treatment was carried out for 400 h at 550°C and the mechanical and thermal properties were compared to their initial values. Different optical microscopes and scanning electron microscopes (REM) were used for the analysis of crack surfaces and grindings. For the engineering design of divertor components numerical models of the used material are required. These models need to be developed by adjusting their input parameters to fit experimental results. To that end, strain-controlled cycling tests allowed the analysis of the copper matrix hardening behaviour. This is necessary to understand stress development during operational load cycles of the CuMMC. The comparison of room temperature tests with 300°C tests showed the effects of fabrication-induced residual stress in the CuMMC. KW - Kupfer KW - Faserverstärkung KW - Metallmatrix-Verbundwerkstoff KW - Kühlkörper KW - Komposite KW - copper KW - fibre-reinforcement KW - SiC KW - heat sink KW - metall-matrix-composite KW - Siliciumcarbid KW - MMC Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85123 ER -