TY - JOUR A1 - Cao, Liyu A1 - Steinborn, Michael B. A1 - Haendel, Barbara F. T1 - Delusional thinking and action binding in healthy individuals JF - Scientific Reports N2 - Action binding is the effect that the perceived time of an action is shifted towards the action related feedback. A much larger action binding effect in schizophrenia compared to normal controls has been shown, which might be due to positive symptoms like delusions. Here we investigated the relationship between delusional thinking and action binding in healthy individuals, predicting a positive correlation between them. The action binding effect was evaluated by comparing the perceived time of a keypress between an operant (keypress triggering a sound) and a baseline condition (keypress alone), with a novel testing method that massively improved the precision of the subjective timing measurement. A positive correlation was found between the tendency of delusional thinking (measured by the 21-item Peters et al. delusions inventory) and action binding across participants after controlling for the effect of testing order between operant and baseline conditions. The results indicate that delusional thinking in particular influences action time perception and support the notion of a continuous distribution of schizotypal traits with normal controls at one end and clinical patients at the other end. KW - cognitive neuroscience KW - psychology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264707 VL - 11 IS - 1 ER - TY - JOUR A1 - Cao, Liyu A1 - Chen, Xinyu A1 - Haendel, Barbara F. T1 - Overground Walking Decreases Alpha Activity and Entrains Eye Movements in Humans JF - Frontiers in Human Neuroscience N2 - Experiments in animal models have shown that running increases neuronal activity in early visual areas in light as well as in darkness. This suggests that visual processing is influenced by locomotion independent of visual input. Combining mobile electroencephalography, motion- and eye-tracking, we investigated the influence of overground free walking on cortical alpha activity (~10 Hz) and eye movements in healthy humans. Alpha activity has been considered a valuable marker of inhibition of sensory processing and shown to negatively correlate with neuronal firing rates. We found that walking led to a decrease in alpha activity over occipital cortex compared to standing. This decrease was present during walking in darkness as well as during light. Importantly, eye movements could not explain the change in alpha activity. Nevertheless, we found that walking and eye related movements were linked. While the blink rate increased with increasing walking speed independent of light or darkness, saccade rate was only significantly linked to walking speed in the light. Pupil size, on the other hand, was larger during darkness than during light, but only showed a modulation by walking in darkness. Analyzing the effect of walking with respect to the stride cycle, we further found that blinks and saccades preferentially occurred during the double support phase of walking. Alpha power, as shown previously, was lower during the swing phase than during the double support phase. We however could exclude the possibility that the alpha modulation was introduced by a walking movement induced change in electrode impedance. Overall, our work indicates that the human visual system is influenced by the current locomotion state of the body. This influence affects eye movement pattern as well as neuronal activity in sensory areas and might form part of an implicit strategy to optimally extract sensory information during locomotion. KW - mobile EEG KW - alpha oscillations KW - blinks KW - saccades KW - locomotion KW - pupil size KW - walking phase KW - motor entrainment Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219872 SN - 1662-5161 VL - 14 ER -