TY - JOUR A1 - Gómez-Fernández, Paloma A1 - Lopez de Lapuente Portilla, Aitzkoa A1 - Astobiza, Ianire A1 - Mena, Jorge A1 - Urtasun, Andoni A1 - Altmann, Vivian A1 - Matesanz, Fuencisla A1 - Otaegui, David A1 - Urcelay, Elena A1 - Antigüedad, Alfredo A1 - Malhotra, Sunny A1 - Montalban, Xavier A1 - Castillo-Triviño, Tamara A1 - Espino-Paisán, Laura A1 - Aktas, Orhan A1 - Buttmann, Mathias A1 - Chan, Andrew A1 - Fontaine, Bertrand A1 - Gourraud, Pierre-Antoine A1 - Hecker, Michael A1 - Hoffjan, Sabine A1 - Kubisch, Christian A1 - Kümpfel, Tania A1 - Luessi, Felix A1 - Zettl, Uwe K. A1 - Zipp, Frauke A1 - Alloza, Iraide A1 - Comabella, Manuel A1 - Lill, Christina M. A1 - Vandenbroeck, Koen T1 - The rare IL22RA2 signal peptide coding variant rs28385692 decreases secretion of IL-22BP isoform-1, -2 and -3 and is associated with risk for multiple sclerosis JF - Cells N2 - The IL22RA2 locus is associated with risk for multiple sclerosis (MS) but causative variants are yet to be determined. In a single nucleotide polymorphism (SNP) screen of this locus in a Basque population, rs28385692, a rare coding variant substituting Leu for Pro at position 16 emerged significantly (p = 0.02). This variant is located in the signal peptide (SP) shared by the three secreted protein isoforms produced by IL22RA2 (IL-22 binding protein-1(IL-22BPi1), IL-22BPi2 and IL-22BPi3). Genotyping was extended to a Europe-wide case-control dataset and yielded high significance in the full dataset (p = 3.17 × 10\(^{-4}\)). Importantly, logistic regression analyses conditioning on the main known MS-associated SNP at this locus, rs17066096, revealed that this association was independent from the primary association signal in the full case-control dataset. In silico analysis predicted both disruption of the alpha helix of the H-region of the SP and decreased hydrophobicity of this region, ultimately affecting the SP cleavage site. We tested the effect of the p.Leu16Pro variant on the secretion of IL-22BPi1, IL-22BPi2 and IL-22BPi3 and observed that the Pro16 risk allele significantly lowers secretion levels of each of the isoforms to around 50%–60% in comparison to the Leu16 reference allele. Thus, our study suggests that genetically coded decreased levels of IL-22BP isoforms are associated with augmented risk for MS. KW - IL22RA2 KW - IL-22 binding protein isoform KW - mutation KW - signal peptide KW - multiple sclerosis KW - autoimmune Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200769 SN - 2073-4409 VL - 9 IS - 1 ER -