TY - JOUR A1 - Bae, Soyeon A1 - Heidrich, Lea A1 - Levick, Shaun R. A1 - Gossner, Martin M. A1 - Seibold, Sebastian A1 - Weisser, Wolfgang W. A1 - Magdon, Paul A1 - Serebryanyk, Alla A1 - Bässler, Claus A1 - Schäfer, Deborah A1 - Schulze, Ernst-Detlef A1 - Doerfler, Inken A1 - Müller, Jörg A1 - Jung, Kirsten A1 - Heurich, Marco A1 - Fischer, Markus A1 - Roth, Nicolas A1 - Schall, Peter A1 - Boch, Steffen A1 - Wöllauer, Stephan A1 - Renner, Swen C. A1 - Müller, Jörg T1 - Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach JF - Diversity and Distribution N2 - Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size. Location: Temperate forests in five regions across Germany. Methods: In the inter-region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results: In the inter-region analysis, over half of the explained variation in community composition (23% of the total explained 35%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy. KW - body size KW - dispersal ability KW - environmental filtering KW - forest physiognomy KW - neutral processes KW - plant composition KW - regional species pool KW - species turnover KW - trophic position KW - β-diversity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236117 VL - 27 IS - 3 ER - TY - JOUR A1 - Philipp, Marius B. A1 - Levick, Shaun R. T1 - Exploring the potential of C-Band SAR in contributing to burn severity mapping in tropical savanna JF - Remote Sensing N2 - The ability to map burn severity and to understand how it varies as a function of time of year and return frequency is an important tool for landscape management and carbon accounting in tropical savannas. Different indices based on optical satellite imagery are typically used for mapping fire scars and for estimating burn severity. However, cloud cover is a major limitation for analyses using optical data over tropical landscapes. To address this pitfall, we explored the suitability of C-band Synthetic Aperture Radar (SAR) data for detecting vegetation response to fire, using experimental fires in northern Australia. Pre- and post-fire results from Sentinel-1 C-band backscatter intensity data were compared to those of optical satellite imagery and were corroborated against structural changes on the ground that we documented through terrestrial laser scanning (TLS). Sentinel-1 C-band backscatter (VH) proved sensitive to the structural changes imparted by fire and was correlated with the Normalised Burn Ratio (NBR) derived from Sentinel-2 optical data. Our results suggest that C-band SAR holds potential to inform the mapping of burn severity in savannas, but further research is required over larger spatial scales and across a broader spectrum of fire regime conditions before automated products can be developed. Combining both Sentinel-1 SAR and Sentinel-2 multi-spectral data will likely yield the best results for mapping burn severity under a range of weather conditions. KW - burn severity KW - Sentinel-1 KW - Sentinel-2 KW - terrestrial LiDAR Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193789 SN - 2072-4292 VL - 12 IS - 1 ER -