TY - JOUR A1 - Chenari, Hossein Mahmoudi A1 - Seibel, Christoph A1 - Hauschild, Dirk A1 - Reinert, Friedrich A1 - Abdollahian, Hossein T1 - Titanium Dioxide Nanoparticles: Synthesis, X-Ray Line Analysis and Chemical Composition Study JF - Materials Research N2 - TiO2 nanoparticleshave been synthesized by the sol-gel method using titanium alkoxide and isopropanolas a precursor. The structural properties and chemical composition of the TiO2 nanoparticles were studied usingX-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy.The X-ray powder diffraction pattern confirms that the particles are mainly composed of the anatase phase with the preferential orientation along [101] direction. The physical parameters such as strain, stress and energy density were investigated from the Williamson- Hall (W-H) plot assuming a uniform deformation model (UDM), and uniform deformation energy density model (UDEDM). The W-H analysis shows an anisotropic nature of the strain in nanopowders. The scanning electron microscopy image shows clear TiO2 nanoparticles with particle sizes varying from 60 to 80nm. The results of mean particle size of TiO2 nanoparticles show an inter correlation with the W-H analysis and SEM results. Our X-ray photoelectron spectroscopy spectra show that nearly a complete amount of titanium has reacted to TiO2 KW - TiO\(_2\) KW - Nanoparticles KW - X-ray analysis KW - SEM KW - XPS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165807 VL - 19 IS - 6 ER - TY - JOUR A1 - Maaß, Henriette A1 - Bentmann, Hendrik A1 - Seibel, Christoph A1 - Tusche, Christian A1 - Eremeev, Sergey V. A1 - Peixoto, Thiago R.F. A1 - Tereshchenko, Oleg E. A1 - Kokh, Konstantin A. A1 - Chulkov, Evgueni V. A1 - Kirschner, Jürgen A1 - Reinert, Friedrich T1 - Spin-texture inversion in the giant Rashba semiconductor BiTeI JF - Nature Communications N2 - Semiconductors with strong spin–orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally challenging and yet essential for exploiting spin–orbit effects for spin manipulation. Here we employ a state-of-the-art photoelectron momentum microscope with a multichannel spin filter to directly image the spin texture of the layered polar semiconductor BiTeI within the full two-dimensional momentum plane. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the valence and conduction band electrons in BiTeI have spin textures of opposite chirality and of pronounced orbital dependence beyond the standard Rashba model, the latter giving rise to strong optical selection-rule effects on the photoelectron spin polarization. These observations open avenues for spin-texture manipulation by atomic-layer and charge carrier control in polar semiconductors. KW - applied physics KW - spintronics KW - semiconductors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173769 VL - 7 ER -