TY - JOUR A1 - Bartel, Karin A1 - Pein, Helmut A1 - Popper, Bastian A1 - Schmitt, Sabine A1 - Janaki-Raman, Sudha A1 - Schulze, Almut A1 - Lengauer, Florian A1 - Koeberle, Andreas A1 - Werz, Oliver A1 - Zischka, Hans A1 - Müller, Rolf A1 - Vollmar, Angelika M. A1 - Schwarzenberg, Karin von T1 - Connecting lysosomes and mitochondria – a novel role for lipid metabolism in cancer cell death JF - Cell Communication and Signaling N2 - Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors. KW - lysosome KW - V-ATPase KW - mitochondria KW - fission KW - apoptosis KW - lipid metabolism KW - cardiolipin Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221524 VL - 17 ER - TY - JOUR A1 - Hennessen, Fabienne A1 - Miethke, Marcus A1 - Zaburannyi, Nestor A1 - Loose, Maria A1 - Lukežič, Tadeja A1 - Bernecker, Steffen A1 - Hüttel, Stephan A1 - Jansen, Rolf A1 - Schmiedel, Judith A1 - Fritzenwanker, Moritz A1 - Imirzalioglu, Can A1 - Vogel, Jörg A1 - Westermann, Alexander J. A1 - Hesterkamp, Thomas A1 - Stadler, Marc A1 - Wagenlehner, Florian A1 - Petković, Hrvoje A1 - Herrmann, Jennifer A1 - Müller, Rolf T1 - Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin JF - Antibiotics N2 - The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound. KW - chelocardins KW - atypical tetracyclines KW - broad-spectrum antibiotics KW - clinical isolates KW - uropathogens KW - urinary tract infection (UTI) KW - resistance-breaking properties KW - mechanism of resistance KW - AcrAB-TolC efflux pump Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213149 SN - 2079-6382 VL - 9 IS - 9 ER -