TY - JOUR A1 - Tamihardja, Jörg A1 - Cirsi, Sinan A1 - Kessler, Patrick A1 - Razinskas, Gary A1 - Exner, Florian A1 - Richter, Anne A1 - Polat, Bülent A1 - Flentje, Michael T1 - Cone beam CT-based dose accumulation and analysis of delivered dose to the dominant intraprostatic lesion in primary radiotherapy of prostate cancer JF - Radiation Oncology N2 - Background Evaluation of delivered dose to the dominant intraprostatic lesion (DIL) for moderately hypofractionated radiotherapy of prostate cancer by cone beam computed tomography (CBCT)-based dose accumulation and target coverage analysis. Methods Twenty-three patients with localized prostate cancer treated with moderately hypofractionated prostate radiotherapy with simultaneous integrated boost (SIB) between December 2016 and February 2020 were retrospectively analyzed. Included patients were required to have an identifiable DIL on bi-parametric planning magnetic resonance imaging (MRI). After import into the RayStation treatment planning system and application of a step-wise density override, the fractional doses were computed on each CBCT and were consecutively mapped onto the planning CT via a deformation vector field derived from deformable image registration. Fractional doses were accumulated for all CBCTs and interpolated for missing CBCTs, resulting in the delivered dose for PTV\(_{DIL}\), PTV\(_{Boost}\), PTV, and the organs at risk. The location of the index lesions was recorded according to the sector map of the Prostate Imaging Reporting and Data System (PIRADS) Version 2.1. Target coverage of the index lesions was evaluated and stratified for location. Results In total, 338 CBCTs were available for analysis. Dose accumulation target coverage of PTV\(_{DIL}\), PTV\(_{Boost}\), and PTV was excellent and no cases of underdosage in D\(_{Mean}\), D_95%, D_02%, and D_98% could be detected. Delivered rectum D\(_{Mean}\) did not significantly differ from the planned dose. Bladder mean DMean was higher than planned with 19.4 ± 7.4 Gy versus 18.8 ± 7.5 Gy, p < 0.001. The penile bulb showed a decreased delivered mean DMean with 29.1 ± 14.0 Gy versus 29.8 ± 14.4 Gy, p < 0.001. Dorsal DILs, defined as DILs in the posterior medial peripheral zone of the prostate, showed a significantly lower delivered dose with a mean DMean difference of 2.2 Gy (95% CI 1.3–3.1 Gy, p < 0.001) compared to ventral lesions. Conclusions CBCT-based dose accumulation showed an adequate delivered dose to the dominant intraprostatic lesion and organs at risk within planning limits. Cautious evaluation of the target coverage for index lesions adjacent to the rectum is warranted to avoid underdosage. KW - adaptive radiotherapy KW - deformable image registration KW - dominant intraprostatic lesion KW - dose accumulation KW - prostate cancer KW - prostate Imaging Reporting and Data System Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265656 VL - 16 ER - TY - JOUR A1 - Tamihardja, Jörg A1 - Razinskas, Gary A1 - Exner, Florian A1 - Richter, Anne A1 - Kessler, Patrick A1 - Weick, Stefan A1 - Kraft, Johannes A1 - Mantel, Frederick A1 - Flentje, Michael A1 - Polat, Bülent T1 - Comparison of treatment plans for hypofractionated high-dose prostate cancer radiotherapy using the Varian Halcyon and the Elekta Synergy platforms JF - Journal of Applied Clinical Medical Physics N2 - Purpose To compare radiotherapy plans between an O-ring and a conventional C-arm linac for hypofractionated high-dose prostate radiotherapy in terms of plan quality, dose distribution, and quality assurance in a multi-vendor environment. Methods Twenty prostate cancer treatment plans were irradiated on the O-ring Varian Halcyon linac and were re-optimized for the C-arm Elekta Synergy Agility linac. Dose-volume histogram metrics for target coverage and organ at risk dose, quality assurance, and monitor units were retrospectively compared. Patient-specific quality assurance with ion chamber measurements, gamma index analysis, and portal dosimetry was performed using the Varian Portal Dosimetry system and the ArcCHECK® phantom (Sun Nuclear Corporation). Prostate-only radiotherapy was delivered with simultaneous integrated boost (SIB) volumetric modulated arc therapy (VMAT) in 20 fractions of 2.5/3.0 Gy each. Results For both linacs, target coverage was excellent and plan quality comparable. Homogeneity in PTVBoost was high for Synergy as well as Halcyon with a mean homogeneity index of 0.07 ± 0.01 and 0.05 ± 0.01, respectively. Mean dose for the organs at risk rectum and bladder differed not significantly between the linacs but were higher for the femoral heads and penile bulb for Halcyon. Quality assurance showed no significant differences in terms of ArcCHECK gamma pass rates. Median pass rate for 3%/2 mm was 99.3% (96.7 to 99.8%) for Synergy and 99.8% (95.6 to 100%) for Halcyon. Agreement between calculated and measured dose was high with a median deviation of −0.6% (−1.7 to 0.8%) for Synergy and 0.2% (−0.6 to 2.3%) for Halcyon. Monitor units were higher for the Halcyon by approximately 20% (p < 0.001). Conclusion Hypofractionated high-dose prostate cancer SIB VMAT on the Halcyon system is feasible with comparable plan quality in reference to a standard C-arm Elekta Synergy linac. KW - acute toxicity KW - dose evaluation KW - Halcyon KW - hypofractionation KW - prostate cancer KW - Synergy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260722 VL - 22 IS - 9 ER - TY - JOUR A1 - Richter, Anne A1 - Wegener, Sonja A1 - Breuer, Kathrin A1 - Razinskas, Gary A1 - Weick, Stefan A1 - Exner, Florian A1 - Bratengeier, Klaus A1 - Flentje, Michael A1 - Sauer, Otto A1 - Polat, Bülent T1 - Comparison of sliding window and field-in-field techniques for tangential whole breast irradiation using the Halcyon and Synergy Agility systems JF - Radiation Oncology N2 - Background To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. Methods For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. Results The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. Conclusions For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system. KW - whole breast irradiation KW - Halcyon KW - IGRT KW - dose to OARs Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265704 VL - 16 ER -