TY - JOUR A1 - Rest, Christina A1 - Philips, Divya Susan A1 - Dünnebacke, Torsten A1 - Sutar, Papri A1 - Sampedro, Angel A1 - Droste, Jörn A1 - Stepanenko, Vladimir A1 - Hansen, Michael Ryan A1 - Albuquerque, Rodrigo Q. A1 - Fernández, Gustavo T1 - Tuning Aqueous Supramolecular Polymerization by an Acid‐Responsive Conformational Switch JF - Chemistry – A European Journal N2 - Besides their widespread use in coordination chemistry, 2,2’‐bipyridines are known for their ability to undergo cis–trans conformational changes in response to metal ions and acids, which has been primarily investigated at the molecular level. However, the exploitation of such conformational switching in self‐assembly has remained unexplored. In this work, the use of 2,2’‐bipyridines as acid‐responsive conformational switches to tune supramolecular polymerization processes has been demonstrated. To achieve this goal, we have designed a bipyridine‐based linear bolaamphiphile, 1, that forms ordered supramolecular polymers in aqueous media through cooperative aromatic and hydrophobic interactions. Interestingly, addition of acid (TFA) induces the monoprotonation of the 2,2’‐bipyridine moiety, leading to a switch in the molecular conformation from a linear (trans) to a V‐shaped (cis) state. This increase in molecular distortion along with electrostatic repulsions of the positively charged bipyridine‐H\(^{+}\) units attenuate the aggregation tendency and induce a transformation from long fibers to shorter thinner fibers. Our findings may contribute to opening up new directions in molecular switches and stimuli‐responsive supramolecular materials. KW - acid-sensitive KW - amphiphilic systems KW - π-conjugated systems KW - noncovalent interactions KW - self-assembly Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218118 VL - 26 IS - 44 SP - 10005 EP - 10013 ER - TY - JOUR A1 - Syamala, Pradeep P. N. A1 - Würthner, Frank T1 - Modulation of the Self‐Assembly of π‐Amphiphiles in Water from Enthalpy‐ to Entropy‐Driven by Enwrapping Substituents JF - Chemistry – A European Journal N2 - Depending on the connectivity of solubilizing oligoethylene glycol (OEG) side chains to the π‐cores of amphiphilic naphthalene and perylene bisimide dyes, self‐assembly in water occurs either upon heating or cooling. Herein, we show that this effect originates from differences in the enwrapping capability of the π‐cores by the OEG chains. Rylene bisimides bearing phenyl substituents with three OEG chains attached directly to the hydrophobic π‐cores are strongly sequestered by the OEG chains. These molecules self‐assemble at elevated temperatures in an entropy‐driven process according to temperature‐ and concentration‐dependent UV/Vis spectroscopy and calorimetric dilution studies. In contrast, for rylene bisimides in which phenyl substituents with three OEG chains are attached via a methylene spacer, leading to much weaker sequestration, self‐assembly originates upon cooling in an enthalpy‐driven process. Our explanation for this controversial behavior is that the aggregation in the latter case is dictated by the release of “high energy water” from the hydrophobic π‐surfaces as well as dispersion interactions between the π‐scaffolds which drive the self‐assembly in an enthalpically driven process. In contrast, for the former case we suggest that in addition to the conventional explanation of a dehydration of hydrogen‐bonded water molecules from OEG units it is in particular the increase in conformational entropy of back‐folded OEG side chains upon aggregation that provides the pronounced gain in entropy that drives the aggregation process. Thus, our studies revealed that a subtle change in the attachment of solubilizing substituents can switch the thermodynamic signature for the self‐assembly of amphiphilic dyes in water from enthalpy‐ to entropy‐driven. KW - amphiphilic dyes KW - self-assembly KW - thermodynamics KW - OEG chains KW - π-conjugated systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218107 VL - 26 IS - 38 SP - 8426 EP - 8434 ER -