TY - JOUR A1 - Lutz, Werner K. A1 - Deuber, R. A1 - Caviezel, M. A1 - Sagelsdorff, P. A1 - Friederich, U. A1 - Schlatter, C. T1 - Trenbolone growth promotant: covalent DNA binding in rat liver and in Salmonella typhimurium, and mutagenicity in the Ames test N2 - DNA binding in vivo: (6,7-\(^3\)H]ß-trenbolone (ß-TBOH) was administered p.o. and i.p. to rats. After 8 or 16 h, DNA was isolated from the livers and purified to constant specific radioactivity. Enzymatic digestion to deoxyribonucleotides and separation by HPLC revealed about 90% ofthe DNA radioactivity eluting in the form of possible TBOH-nucleotide adducts. The extent of this genotoxicity, expressed in units of the Covalent Binding Index, CBI = (~mol TBOH bound per mol nucleotide)/(mmol TBOH administered per kg body weight) spanned from 8 t~ 17, i. e. was in the range found with weak genotoxic carcmogens. Ames test: low doses of ß-TBOH increased the number of revertants in Salmonella strain TAl 00 reproducibly and m a dose-dependent manner. The mutagenic potency was 0.2 revertants per nmol after preincubation of the bacteria (20 min at 37° C) with doses between 30 and 60 \(\mu\)g per plate (47 and 94 \(\mu\)g/ml preincubation mixture). Above this dose, the number of revertants decreased to control values, accompanied by a reduction in survival. The addition of rat liver S9 inhibited the mutagenicity. DNA binding in vitro: calf thymus DNA was incubated with tritiated ß-TBOH with and without rat liver S9 Highest DNA radioactivities were determined in the absence of the "activation" system. Addition of inactive S9 (without cofactors) reduced the DNA binding by a factor of up to 20. Intermediate results were found with active S9. DNA binding in Salmonella: ß-TBOH was irreversibly bound to DNA isolated from S. typhimurium TA100 after incubation of bacteria with [\(^3\)H]ß-TBOH. Conclusions: Covalent DNA binding appears to be the mechanism of an activation-independent ("direct") mutagenicity of TBOH which is not easily detected because of the bactericidal activity. The genotoxicity risk arising from exposure of humans to trenbolone residues in meat was estimated using the in vivo data and compared to that from the exposure to unavoidable genotoxins aflatoxin B1 and dimethylnitrosamine. It ts concluded that trenbolone residues represent only a low genotoxic risk. KW - Toxikologie KW - Trenbolone KW - Anabolieagent KW - DNA binding KW - Genotoxicity KW - Ames test KW - Salmonella typhimurium Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60897 ER - TY - JOUR A1 - Hof, H. A1 - Emmerling, P. A1 - Hacker, Jörg A1 - Hughes, C. T1 - The role of macrophages in primary and secondary infection of mice with Salmonella typhimurium N2 - Elimination of macrophages with high-molecular dextran sulphate (OS) markedly impairs resistance of mice to primary infection with smooth, virulent strains of Salmonella typhimurium, whereas stimulation of this system by killed Bordetella pertussis organisms increases resistance. In infection with rough, avirulent strains of S. iyphimurium the elimination of macro phages was not followed by an essential loss of resistance, and it appears that other non-specific defence mechanisms, for example the complement system, may have compensated for the lack of macrophages. Macrophages, therefore, play an important role in defence during primary infection with virulent strains. In immunity to challenge infection with S. typhimurium, macrophages play an even more significant role. Treatment with OS completely removes immunity, and both humoral and cell-mediated immune mechanisms seem to require the participation of macrophages. KW - Macrophage KW - Salmonella typhimurium KW - Dextran sulphate KW - Mouse KW - 0 antigen KW - Bordeiella pertussis Y1 - 1982 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40248 ER - TY - JOUR A1 - Hacker, Jörg A1 - Hof, H. A1 - Hughes, C. A1 - Goebel, W. T1 - Salmonella typhimurium strains carrying hemolysin plasmids and cloned hemolysin. genes from Escherichia coli N2 - Like all other Salmonella typhimurium strains examined, the smooth variants SF1397 (L T2) and 1366 and also their semi-rough and rough derivatives are non-haemolytic. Nevertheless, two haemolysin (Hly) plasmids of E. coli belonging to the inc groups incFllI,lv (pSU316) and incIz (pHly152) were able to be introduced into these strains by conjugation and stably maintained. A considerable percentage of the Hly+ transconjugants obtained had lost parts of their O-side chains, a result of selection for the better recipient capability of « semi-rough» variants rather than the direct influence of the Hly+ plasmids themselves. In contrast to the incF1lI1V plasmid pSU316, which exhibited higher conjugation rates with rough recipients, the incIz plasmid pHly152 was accepted best by smooth strains. Transformation with cloned E. coli haemolysin (hly) determinant was inefficient ( <10-8) for smooth strains, but 102-103 times higher for rough recipients, and was increased by the use of Salmonella-modified DNA. The transform ants and transconjugants were relatively stable and showed the same haemolytic activity as the E. coli donor strains. The virulence of the Hly+ smooth, semi-rough and rough S. typhimurium strains was tested in two mouse models, and neither the mortality rate nor the ability to multiply within the mouse spleen was influenced by the hly determinants. KW - Salmonella typhimurium KW - Plasmid KW - Haemolysin KW - Escherichia coli KW - Virulence Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40309 ER -