TY - JOUR A1 - Glaser, Kirsten A1 - Kern, David A1 - Speer, Christian P. A1 - Schlegel, Nicolas A1 - Schwab, Michael A1 - Thome, Ulrich H. A1 - Härtel, Christoph A1 - Wright, Clyde J. T1 - Imbalanced inflammatory responses in preterm and term cord blood monocytes and expansion of the CD14\(^+\)CD16\(^+\) subset upon toll-like receptor stimulation JF - International Journal of Molecular Sciences N2 - Developmentally regulated features of innate immunity are thought to place preterm and term infants at risk of infection and inflammation-related morbidity. Underlying mechanisms are incompletely understood. Differences in monocyte function including toll-like receptor (TLR) expression and signaling have been discussed. Some studies point to generally impaired TLR signaling, others to differences in individual pathways. In the present study, we assessed mRNA and protein expression of pro- and anti-inflammatory cytokines in preterm and term cord blood (CB) monocytes compared with adult controls stimulated ex vivo with Pam3CSK4, zymosan, polyinosinic:polycytidylic acid, lipopolysaccharide, flagellin, and CpG oligonucleotide, which activate the TLR1/2, TLR2/6, TLR3, TLR4, TLR5, and TLR9 pathways, respectively. In parallel, frequencies of monocyte subsets, stimulus-driven TLR expression, and phosphorylation of TLR-associated signaling molecules were analyzed. Independent of stimulus, pro-inflammatory responses of term CB monocytes equaled adult controls. The same held true for preterm CB monocytes—except for lower IL-1β levels. In contrast, CB monocytes released lower amounts of anti-inflammatory IL-10 and IL-1ra, resulting in higher ratios of pro-inflammatory to anti-inflammatory cytokines. Phosphorylation of p65, p38, and ERK1/2 correlated with adult controls. However, stimulated CB samples stood out with higher frequencies of intermediate monocytes (CD14\(^+\)CD16\(^+\)). Both pro-inflammatory net effect and expansion of the intermediate subset were most pronounced upon stimulation with Pam3CSK4 (TLR1/2), zymosan (TR2/6), and lipopolysaccharide (TLR4). Our data demonstrate robust pro-inflammatory and yet attenuated anti-inflammatory responses in preterm and term CB monocytes, along with imbalanced cytokine ratios. Intermediate monocytes, a subset ascribed pro-inflammatory features, might participate in this inflammatory state. KW - neonatal immunology KW - inflammation KW - preterm infants KW - monocytes KW - cord blood KW - monocyte subsets KW - cytokines KW - Toll-like receptor signaling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311056 SN - 1422-0067 VL - 24 IS - 5 ER - TY - JOUR A1 - Kollmann, Catherine A1 - Buerkert, Hannah A1 - Meir, Michael A1 - Richter, Konstantin A1 - Kretzschmar, Kai A1 - Flemming, Sven A1 - Kelm, Matthias A1 - Germer, Christoph-Thomas A1 - Otto, Christoph A1 - Burkard, Natalie A1 - Schlegel, Nicolas T1 - Human organoids are superior to cell culture models for intestinal barrier research JF - Frontiers in Cell and Developmental Biology N2 - Loss of intestinal epithelial barrier function is a hallmark in digestive tract inflammation. The detailed mechanisms remain unclear due to the lack of suitable cell-based models in barrier research. Here we performed a detailed functional characterization of human intestinal organoid cultures under different conditions with the aim to suggest an optimized ex-vivo model to further analyse inflammation-induced intestinal epithelial barrier dysfunction. Differentiated Caco2 cells as a traditional model for intestinal epithelial barrier research displayed mature barrier functions which were reduced after challenge with cytomix (TNFα, IFN-γ, IL-1ß) to mimic inflammatory conditions. Human intestinal organoids grown in culture medium were highly proliferative, displayed high levels of LGR5 with overall low rates of intercellular adhesion and immature barrier function resembling conditions usually found in intestinal crypts. WNT-depletion resulted in the differentiation of intestinal organoids with reduced LGR5 levels and upregulation of markers representing the presence of all cell types present along the crypt-villus axis. This was paralleled by barrier maturation with junctional proteins regularly distributed at the cell borders. Application of cytomix in immature human intestinal organoid cultures resulted in reduced barrier function that was accompanied with cell fragmentation, cell death and overall loss of junctional proteins, demonstrating a high susceptibility of the organoid culture to inflammatory stimuli. In differentiated organoid cultures, cytomix induced a hierarchical sequence of changes beginning with loss of cell adhesion, redistribution of junctional proteins from the cell border, protein degradation which was accompanied by loss of epithelial barrier function. Cell viability was observed to decrease with time but was preserved when initial barrier changes were evident. In summary, differentiated intestinal organoid cultures represent an optimized human ex-vivo model which allows a comprehensive reflection to the situation observed in patients with intestinal inflammation. Our data suggest a hierarchical sequence of inflammation-induced intestinal barrier dysfunction starting with loss of intercellular adhesion, followed by redistribution and loss of junctional proteins resulting in reduced barrier function with consecutive epithelial death. KW - intestinal epithelial barrier KW - Caco2 cells KW - intestinal organoids KW - enteroids KW - gut barrier KW - inflammatory cell model KW - inflammation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357317 SN - 2296-634X VL - 11 ER -