TY - THES A1 - Messerer, Regina T1 - Synthesis of Dualsteric Ligands for Muscarinic Acetylcholine Receptors and Cholinesterase Inhibitors T1 - Synthese von dualsteren Liganden für muskarinerge Acetylcholinrezeptoren sowie Inhibitoren der Cholinesterasen N2 - The study is dealing with the synthesis and pharmacological investigation of newly designed dualsteric ligands of muscarinic acetylcholine receptors belonging to the superfamily of G protein-coupled receptors. Such bipharmacophoric ligands combine the advantages of the orthosteric binding site (high-affinity) and of the topographically distinct allosteric binding site (subtype-selectivity) resulting in compounds with reduced side effects. This opens the way to a new therapeutic approach in the treatment of e.g. chronic pain, drug withdrawal, Parkinson`s and Alzheimer`s disease. Furthermore, the newly synthesized dualsteric compounds were pharmacologically investigated in order to get a better understanding of the activation and signaling processes in muscarinic acetylcholine receptors, especially with regard to partial agonism. The development of the “dynamic ligand binding” concept offers new perspectives for ligand binding and signaling at G protein-coupled receptors. GPCRs are no longer considered as simple on/off switches. Dualsteric ligands can bind in a dualsteric pose, reflecting an active receptor state as well as in a purely allosteric binding pose, characterized by an inactive receptor state resulting in partial agonism. The degree of partial agonism depends on the ratio of active versus inactive receptor populations. On this basis, orthosteric/orthosteric hybrid ligands consisting of the antagonist atropine and scopolamine, respectively, as well as of the agonist iperoxo and isoxazole, respectively, linked via different alkyl chain length were synthesized in order to investigate partial agonism (Figure 1). Figure 1: Structures of the synthesized iperoxo/isoxazole-atropine/scopolamine-hybrids. Furthermore, different sets of quaternary and tertiary homodimers consisting either of two iperoxo or two acetylcholine units were synthesized in order to study their extent on partial agonism (Figure 2). The two agonists were connected by varying alkyl chain length. Binding studies on CHO-hM2 cells of the quaternary compounds revealed that dimerization of the agonist results in a loss of potency. The iperoxo-dimers reached higher maximum effects on the Gi- as well as on the Gs pathway in comparison to the acetylcholine-dimers. Besides the choice of the orthosteric building block (potency of the agonist), the alkyl chain length is also crucial for the degree of partial agonism. Figure 2: Structures of the synthesized quat./tert. iperoxo/acetylcholine-homodimers. Quinolone-based hybrids connected to the superagonist iperoxo and to the endogenous ligand acetylcholine, respectively, linked through an alkyl chain of different length were synthesized in order to develop further partial agonists (Figure 3). FRET studies confirmed M1 subtype-selectivity as well as linker dependent receptor response. The greatest positive FRET signal was observed with quinolone-C6-iper resulting from a positive cooperativity between the two separated moieties, alloster and orthoster. However, the corresponding hybrids with a longer linker led to an inverse FRET signal indicating a different binding mode, e.g. purely allosteric, in contrast to the shorter linked hybrids. Furthermore, the flexible alkyl spacer was replaced by a rigidified linker resulting in the hybrid quinolone-rigid-iperoxo (Figure 3). FRET studies on the M1 receptor showed reduced FRET kinetics, resulting from interactions between the bulky linker and the aromatic lid, located between the orthosteric and allosteric binding site. A bitopic binding mode of the rigidified hybrid is presumed. For further clarity, mutational studies are necessary. Figure 3: M1-selective hybrid compounds. Another aim of this work was the design and synthesis of new hybrid compounds, acting as agonists at the M1 and M2 receptor and as inhibitors for AChE and BChE in the context of M. Alzheimer. Several sets of hybrid compounds consisting of different pharmacophoric units (catalytic active site: phthalimide, naphthalimide, tacrine; peripheric anionic site: iperoxo, isoxazole) linked through a polymethylene chain of varying length were synthesized. Tac-C10-iper (Figure 4), consisting of tacrine and the superagonist iperoxo linked by a C10 polymethylene spacer, was found to have excellent anticholinesterase activity for both AChE (pIC50 = 9.81) and BChE (pIC50 = 8.75). Docking experiments provided a structural model to rationalize the inhibitory power towards AChE. Additionally, the tacrine related hybrids showed affinity to the M1 and M2 receptor. Such compounds, addressing more than one molecular target are favorable for multifactorial diseases such as Alzheimer. Figure 4: Structure of the most active compound regarding anticholinesterase activity. In summary, the choice of the pharmacophoric units, their connecting point as well as the nature, length, and flexibility of the linker play an important role for the activity of designed bivalent ligands. A shorter linker length cannot bridge both binding sites simultaneously in contrast to longer linker chains. On the other hand, too long linker chains can result in unwanted steric interactions. Further investigations with respect to structural variations of hybrid compounds, with or without quaternary ammonium groups, are necessary in the light of drug development. N2 - Die vorliegende Studie beschäftigt sich mit der Synthese und der pharmakologischen Untersuchung von neu entwickelten dualsteren Liganden des muskarinischen Acetylcholinrezeptors, welcher zur Superfamilie der G-Proteine gehört. In derartigen bipharmakophoren Liganden sind die Vorteile des orthosteren Bindemodus und des räumlich davon getrennten allosteren Bindemodus vereint. Der orthostere Bindemodus bewirkt eine hohe Affinität zum Rezeptor, während der allostere Bindemodus Subtypselektivität vermittelt. Dadurch weisen diese Verbindungen weniger Nebenwirkungen auf. Dies eröffnet einen neuen Therapieansatz in der medikamentösen Behandlung von z.B. chronischen Schmerzen, Drogenentzug, Morbus Parkinson und Morbus Alzheimer. Die neu synthetisierten, dualsteren Verbindungen wurden pharmakologisch untersucht, um ein besseres Verständnis über das Bindungsverhalten und die Signalweiterleitung an muskarinischen Acetylcholinrezeptoren zu erhalten, besonders in Hinblick auf Partialagonismus. Die Entwicklung des Konzeptes der „dynamischen Ligandenbindung“ bietet neue Perspektiven in Hinblick auf das Bindungsverhalten und die Signalweiterleitung an G-Protein gekoppelten Rezeptoren. Somit werden GPCRs nicht mehr nur in ihrem aktiven oder inaktiven Zustand betrachtet. Vielmehr können dualstere Liganden sowohl einen dualsteren Bindemodus, welcher den aktiven Rezeptorzustand widerspiegelt, als auch einen rein allosteren Bindemodus, welcher durch einen inaktiven Rezeptorzustand charakterisiert ist, einnehmen, was schließlich zu Partialagonismus führt. Die Stärke des resultierenden Partialagonismus hängt vom Verhältnis zwischen aktiver und inaktiver Rezeptorbesetzung ab. Auf Basis dessen wurden orthostere/orthostere Hybridverbindungen, bestehend aus einem Antagonisten, Atropin oder Scopolamin, und einem Agonisten, Iperoxo oder Isoxazol, die über eine Alkylkette unterschiedlicher Länge miteinander verknüpft sind, synthetisiert, um mit deren Hilfe den Partialagonismus zu steuern (Abbildung 1). Abbildung 1: Strukturen der synthetisierten Iperoxo/Isoxazol-Atropin/Scopolamin-Hybride. Es wurden verschiedene quartäre sowie tertiäre Homodimere, welche entweder aus zwei Iperoxo-Einheiten oder aus zwei Acetylcholin-Einheiten bestehen, synthetisiert, um deren Ausmaß in Bezug auf Partialagonismus untersuchen zu können (Abbildung 2). Die beiden Agonisten wurden über unterschiedlich lange Alkylketten miteinander verknüpft. Bindungsstudien an CHO-hM2 Zellen der quartären Verbindungen zeigten, dass die Dimerisierung eines Agonisten zu einer verringerten Wirkstärke führt. Die Dimere von Iperoxo erreichten sowohl auf dem Gi- als auch auf dem Gs-Signalweg höhere Maximaleffekte als die Dimere von Acetylcholin. Neben der Wahl des orthosteren Bausteins (Wirkstärke des Agonisten) spielt auch die Länge der Alkylkette eine entscheidende Rolle für die Stärke des Partialagonismus. Abbildung 2: Strukturen der synthetisierten quart./tert. Iperoxo/Acetylcholin-Homodimere. Um weitere Partialagonisten zu entwickeln, wurden Chinolon-basierte Verbindungen, die mit dem Superagonisten Iperoxo oder mit dem endogenen Liganden Acetylcholin über eine Alkylkette mit unterschiedlicher Länge verknüpft sind, synthetisiert (Abbildung 3). FRET-Messungen bestätigen, dass es sich bei den Hybriden um M1-subtypselektive Substanzen handelt und das FRET-Signal von der Länge der Zwischenkette abhängig ist. Das stärkste positive FRET-Signal wurde mit der Verbindung Chinolon-C6-Iper erzielt, welches durch positive Kooperativität zwischen den beiden Liganden, Alloster und Orthoster, zustande kommt. Im Gegensatz zu den kurzkettigen Hybriden beobachtete man bei den langkettigen Hybriden ein inverses FRET-Signal, welches auf einen anderen Bindemodus zum Rezeptor hindeutet, z.B. könnte es sich um eine rein allostere Bindung handeln. Außerdem wurde die flexible Alkylkette durch einen starren Linker ersetzt, welches im Hybrid Chinolon-rigide-Iperoxo verwirklicht ist (Abbildung 3). FRET-Messungen dieser starren Hybridverbindung am M1-Rezeptor zeigten eine verzögerte FRET-Kinetik, welche vermutlich auf Wechselwirkungen zwischen dem starren Linker und dem aromatischen Deckel, der sich zwischen der orthosteren und der allosteren Bindestelle befindet, zurückzuführen ist. Es wird vermutet, dass das starre Hybrid bitopisch in den Rezeptor bindet. Um diese Annahme bestätigen zu können, müssten Mutationsstudien durchgeführt werden. Abbildung 3: M1-selektive Hybridverbindungen. Ein weiteres Ziel dieser Arbeit war das Wirkstoffdesign und die Synthese von neuen Hybridverbindungen, die als Agonisten am M1- und am M2-Rezeptor sowie als Inhibitoren der AChE als auch der BChE im Hinblick auf die Alzheimer`sche Krankheit wirken sollen. Verschiedenartige Hybridverbindungen, bestehend aus unterschiedlichen pharmakophoren Gruppen (katalytische, aktive Seite: Phthalimid, Naphthalimid, Tacrin; periphere, anionische Seite: Iperoxo, Isoxazol), die über eine Polymethylenkette unterschiedlicher Länge miteinander verknüpft sind, wurden synthetisiert. Tac-C10-Iper (Abbildung 4), bestehend aus Tacrin und dem Superagonisten Iperoxo, welche über eine C10 Polymethylenkette miteinander verknüpft sind, zeigte exzellente Anticholinesterase-Aktivitäten sowohl für die AChE (pIC50 = 9.81) als auch für die BChE (pIC50 = 8.75). Docking-Experimente lieferten ein Strukturmodell, welches die inhibitorische Aktivität in Bezug auf die AChE begründet. Zusätzlich zeigten die aus Tacrin bestehenden Hybride Affinität zum M1- als auch zum M2-Rezeptor. Solche Verbindungen, die mehr als ein Zielmolekül adressieren, sind für multifaktorielle Krankheiten, wie z.B. die Alzheimer`sche Krankheit, von Vorteil. Abbildung 4: Struktur der aktivsten Substanz in Bezug auf die Anticholinesterase-Aktivität. Zusammenfassend kann festgestellt werden, dass sowohl die Wahl des Pharmakophors, deren Verbindungsstelle als auch die Zusammensetzung, Länge und Flexibilität des Linkers eine große Rolle für die Aktivität der entwickelten bivalenten Verbindungen spielen. Kurzkettige Linker können im Gegensatz zu längeren Zwischenketten nicht beide Bindestellen gleichzeitig überbrücken. Andererseits können zu lange Zwischenketten unerwünschte sterische Wechselwirkungen hervorrufen. Weitere Untersuchungen in Bezug auf strukturelle Veränderungen der Hybridverbindungen, mit oder ohne quartäre Ammoniumgruppen, sind in Bezug auf die Arzneimittelentwicklung notwendig.   KW - Cholinesteraseinhibitor KW - Muscarinrezeptor KW - Ligand KW - GTP-bindende Proteine KW - dualsteric ligands KW - muscarinic acetylcholine receptor KW - cholinesterase inhibitors KW - receptors KW - coupled KW - gprotein KW - inhibitors KW - cholinesterase Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149007 ER - TY - THES A1 - Mohsen, Amal Mahmoud Yassin T1 - Structure Activity Relationships of Monomeric and Dimeric Strychnine Analogs as Ligands Targeting Glycine Receptors T1 - Strukturaktivitätsbeziehungen von monomeren und dimeren Strychninanaloga als Liganden, die Glycinrezeptoren N2 - The inhibitory glycine receptors are one of the major mediators of rapid synaptic inhibition in the mammalian brainstem, spinal cord and higher brain centres. They are ligand-gated ion channels that are mainly involved in the regulation of motor functions. Dysfunction of the receptor is associated with motor disorders such as hypereklepxia or some forms of spasticity. GlyR is composed of two glycosylated integral membrane proteins α and β and a peripheral membrane protein of gephyrin. Moreover, there are four known isoforms of the α-subunit (α1-4) of GlyR while there is a single β-subunit. Glycine receptors can be homomeric including α subunits only or heteromeric containing both α and β subunits. To date, strychnine is the ligand that has the highest affinity as glycine receptor ligand. It acts as a competitive antagonist of glycine that results in the inhibition of Cl- ions permeation and consequently reducing GlyR-mediated inhibition. For a long time, the details of the molecular mechanism of GlyRs inactivation by strychnine were insufficient due to the lack of high-resolution structures of the receptor. Only homology models based on structures of other cys-loop receptors have been available. Recently, 3.0 Å X-ray structure of the human glycine receptor- α3 homopentamer in complex with strychnine, as well as electro cryo-microscopy structures of the zebra fish α1 GlyR in complex with strychnine and glycine were published. Such information provided detailed insight into the molecular recognition of agonists and antagonists and mechanisms of GlyR activation and inactivation. Very recently, a series of dimeric strychnine analogs obtained by diamide formation of two molecules of 2-aminostrychnine with diacids of different chain length was pharmacologically evaluated at human α1 and α1β glycine receptors. None of the dimeric analogs was superior to strychnine. The present work focused on the extension of the structure-activity relationships of strychnine derivatives at glycine receptors All the synthesized compounds were pharmacologically evaluated at human α1 and α1β glycine receptors in a functional FLIPRTM assay and the most potent analogs were pharmacologically evaluated in a whole cell patch-clamp assay and in [3H]strychnine binding studies. It was reported that 11-(E)-isonitrosostrychnine displayed a 2-times increased binding to both α1 and α1β glycine receptors which prompted us to choose the hydroxyl group as a suitable attachment point to connect two 11-(E)-isonitrosostrychnine molecules using a spacer. In order to explore the GlyR pocket tolerance for oxime extension, a series of oxime ethers with different spacer lengths and sterical/lipophilic properties were synthesized biologically evaluated. Among all the oxime ethers, methyl, allyl and propagyl oxime ethers were the most potent antagonists displaying IC50 values similar to that of strychnine. These findings indicated that strychnine binding site at GlyRs comprises an additional small lipophilic pocket located in close proximity to C11 of strychnine and the groups best accommodated in this pocket are (E)-allyl and (E)-propagyl oxime ethers. Moreover, 11-aminostrychnine, and the corresponding propionamide were prepared and pharmacologically evaluated to examine the amide function at C11 as potential linker. A series of dimeric strychnine analogs designed by linking two strychnine molecules through amino groups in position 11 with diacids were synthesized and tested in binding studies and functional assays at human α1 and α1β glycine receptors. The synthesized bivalent ligands were designed to bind simultaneously to two α-subunits of the pentameric glycine receptors causing a possibly stronger inhibition than the monomeric strychnine. However, all the bivalent derivatives showed no significant difference in potency compared to strychnine. When comparing the reference monomeric propionamide containing ethylene spacer to the dimeric ligand containing butylene spacer, a 3-fold increase in potency was observed. Since the dimer containing (CH2)10 spacer length was found to be equipotent to strychnine, it is assumed that one molecule of strychnine binds to the receptor and the ‘additional’ strychnine molecule in the dimer probably protrudes from the orthosteric binding sites of the receptor. N2 - Die inhibitorischen Glycin-Rezeptoren (GlyR) gehören zu den wichtigsten Mediatoren der schnellen synaptischen Hemmung im Säugetierhirnstamm, Rückenmark und in höheren Gehirnzentren. Sie sind ligandgesteuerte Ionenkanäle, die hauptsächlich an der Regulation der motorischen Funktionen beteiligt sind. Dysfunktion des Rezeptors ist assoziiert mit motorischen Störungen wie Hyperekplexie und einigen Formen von Spastizität. GlyR sind Proteinkomplexe, die aus zwei glykosylierten integralen Membranproteinen α und β und dem peripheren Membranprotein Gephyrin bestehen. Von der α-Untereinheit sind vier Isoformen bekannt (α1-4), von der β-Untereinheit nur eine. GlyR können homomer (nur α-Untereinheiten) oder heteromer (α und ß-Untereinheiten) sein. Das Alkaloid Strychnin weist eine sehr hohe Affinität zu den GlyR auf. Es wirkt als kompetitiver Antagonist von Glycin und führt nach Bindung zu einer Hemmung des Chlorid-Ionen-Einstroms und folglich zu einer Verringerung der GlyR-vermittelten Inhibition. Lange Zeit waren die genauen Details des molekularen Mechanismus der GlyR-Inaktivierung durch Strychnin aufgrund des Fehlens von hochauflösenden Röntgenstrukturen des Rezeptors nicht bekannt; es standen nur Homologie-Modelle basierend auf Strukturen anderer cys-Loop-Rezeptoren zur Verfügung. Vor kurzem wurden eine 3.0-Å-Röntgenstruktur des humanen GlyR (α3-Homopentamer) im Komplex mit Strychnin sowie eine Kryoelektronenmikroskopie-Struktur des Zebrafisches (α1-GlyR im Komplex mit Strychnin und Glycin) veröffentlicht. Dadurch erhielt man detailliertere Informationen über die molekulare Erkennung von Agonisten und Antagonisten sowie den Mechanismen der Aktivierung und Inaktivierung von GlyR. Kürzlich wurde eine Reihe von dimeren Strychnin-Analoga, bei denen jeweils zwei Moleküle 2-Aminostrychnin durch Reaktion mit Disäuren unterschiedlicher Kettenlänge zu den entsprechenden Diamiden miteinander verknüpft wurden, pharmakologisch an humanen α1- und α1β-GlyR untersucht. Keines der dimeren Analoga war Strychnin überlegen. Die vorliegende Arbeit konzentriert sich auf der Erweiterung der Struktur-Wirkungs-Beziehungen von Strychnin-Derivaten bzgl. der Aktivität an Glycin-Rezeptoren. Die strukturellen Änderungen, die an Strychnin durchgeführt wurden, sind in Abbildung 27 dargestellt. ... KW - Strychnin KW - strychnine KW - Monomere KW - Dimere KW - Ligand KW - Glycinrezeptor KW - dimeric strychnine ligands Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142228 ER -