TY - JOUR A1 - Heidrich, Nadja A1 - Bauriedl, Saskia A1 - Barquist, Lars A1 - Li, Lei A1 - Schoen, Christoph A1 - Vogel, Jörg T1 - The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq JF - Nucleic Acids Research N2 - Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of −35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx. KW - RNA KW - Neisseria meningitidis KW - dRNA-seq KW - transcriptome KW - RNA chaperone Hfq Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170828 VL - 45 IS - 10 ER - TY - JOUR A1 - Liu, Han A1 - Chen, Chunhai A1 - Gao, Zexia A1 - Min, Jiumeng A1 - Gu, Yongming A1 - Jian, Jianbo A1 - Jiang, Xiewu A1 - Cai, Huimin A1 - Ebersberger, Ingo A1 - Xu, Meng A1 - Zhang, Xinhui A1 - Chen, Jianwei A1 - Luo, Wei A1 - Chen, Boxiang A1 - Chen, Junhui A1 - Liu, Hong A1 - Li, Jiang A1 - Lai, Ruifang A1 - Bai, Mingzhou A1 - Wei, Jin A1 - Yi, Shaokui A1 - Wang, Huanling A1 - Cao, Xiaojuan A1 - Zhou, Xiaoyun A1 - Zhao, Yuhua A1 - Wei, Kaijian A1 - Yang, Ruibin A1 - Liu, Bingnan A1 - Zhao, Shancen A1 - Fang, Xiaodong A1 - Schartl, Manfred A1 - Qian, Xueqiao A1 - Wang, Weimin T1 - The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet JF - GigaScience N2 - The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation. KW - Megalobrama amblycephala KW - whole genome KW - herbivorous diet KW - intermuscular bone KW - transcriptome KW - gut microflora Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170844 VL - 6 IS - 7 ER -