TY - THES A1 - Viswanathan, Aravindan T1 - Biochemical and structural characterisation of modules within the SMN complex T1 - Biochemische und strukturelle Charakterisierung von Modulen des SMN-Komplexes N2 - Cellular proteome profiling revealed that most biomolecules do not exist in isolation, but rather are incorporated into modular complexes. These assembled complexes are usually very large, consisting of 10 subunits on an average and include either proteins alone, or proteins and nucleic acids. Consequently, such macromolecular assemblies rather than individual biopolymers perform the vast majority of cellular activities. The faithful assembly of such molecular assemblies is often aided by trans-acting factors in vivo, to preclude aggregation of complex components and/or non-cognate interactions. A paradigm for an assisted assembly of a macromolecular machine is the formation of the common Sm/LSm core of spliceosomal and histone-mRNA processing U snRNPs. The key assembly factors united in the Protein Arginine Methyltransferase 5 (PRMT5) and the Survival Motor Neuron (SMN) complexes orchestrate the assembly of the Sm/LSm core on the U snRNAs. Assembly is initiated by the PRMT5-complex subunit pICln, which pre-arranges the Sm/LSm proteins into spatial positions occupied in the mature U snRNPs. The SMN complex subsequently binds these Sm/LSm units, displaces pICln and catalyses the Sm ring closure on the Sm-site of the U snRNA. The SMN complex consists of the eponoymous SMN protein linked in a modular network of interactions with eight other proteins, termed Gemins 2-8 and Unrip. Despite functional and structural characterisation of individual protein components and/or sub-complexes of this assembly machinery, coherent understanding of the structural framework of the core SMN complex remained elusive. The current work, employing a combined approach of biochemical and structural studies, aimed to contribute to the understanding of how distinct modules within the SMN complex coalecse to form the macromolecular SMN complex. A novel atomic resolution (1.5 Å) structure of the human Gemin8:7:6 sub-complex, illustrates how the peripheral Gemin7:6 module is tethered to the SMN complex via Gemin8’s C-terminus. In this model, Gemin7 engages with both Gemin6 and Gemin8 via the N- and C-termini of its Sm-fold like domain. This highly conserved interaction mode is reflected in the pronounced sequence conservation and identical biochemical behaviour of similar sub-complexes from divergent species, namely S. pombe and C. elegans. Despite lacking significant sequence similarity to the Sm proteins, the dimeric Gemin7:6 complex share structural resemblance to the Sm heteromers. The hypothesis that the dimeric Gemin7:6 functions as a Sm-surrogate during Sm core assembly could not be confirmed in this work. The functional relevance of the structural mimicry of the dimeric Gemin7:6 sub-complex with the Sm heterodimers therefore still remains unclear. Reduced levels of functional SMN protein is the cause of the devastating neurodegenerative disease, Spinal Muscular Atrophy (SMA). The C-terminal YG-zipper motif of SMN is a major hot-spot for most SMA patient mutations. In this work, adding to the existing inventory of the human and fission yeast YG-box models, a novel 2.2 Å crystal structure of the nematode SMN’s YG-box domain adopting the glycine zipper motif has been reported. Furthermore, it could be assessed that SMA patient mutations mapping to this YG-box domain greatly influences SMN’s self-association competency, a property reflected in both the human and nematode YG-box biochemical handles. The shared molecular architecture and biochemical behaviour of the nematode SMN YG-box domain with its human and fission yeast counterparts, reiterates the pronounced conservation of this oligomerisation motif across divergent organisms. Apart from serving as a multimerization domain, SMN’s YG-box also acts as interaction platform for Gemin8. A systematic investigation of SMA causing missense mutations uncovered that Gemin8’s incorporation into the SMN complex is influenced by the presence of certain SMA patient mutations, albeit independent of SMN’s oligomerisation status. Consequently, loss of Gemin8 association in the presence of SMA patient mutations would also affect the incorporation of Gemin7:6 sub-complex. Gemin8, therefore sculpts the heteromeric SMN complex by bridging the Gemin7:6 and SMN:Gemin2 sub-units, a modular feature shared in both the human and nematode SMN complexes. These findings provide an important foundation and a prospective structural framework for elucidating the core architecture of the SMN complex in the ongoing Cryo-EM studies. N2 - Systematische Untersuchungen von zellulären Bestandteilen haben gezeigt, dass viele Proteine nicht isoliert, sondern vielmehr in modularen Komplexen organisiert vorliegen. Mit durchschnittlich zehn Untereinheiten sind diese Komplexe sehr groß, wobei sie entweder ausschließlich aus Proteinen oder aber aus Proteinen und Nukleinsäuren bestehen können. Daher wird der Großteil zellulärer Aktivitäten nicht von einzelnen Biopolymeren, sondern von makromolekularen Komplexen verrichtet. Die Zusammenlagerung dieser Komplexe wird in vivo häufig von Hilfsfaktoren unterstützt, um die Aggregation der Einzelkomponenten und/oder unspezifische Wechselwirkungen zu verhindern. Ein Beispiel für eine derartige Zusammenlagerungshilfe ist die Bildung des Sm/LSm-Cores der mRNA-prozessierenden U snRNPs. Dabei wird die Anlagerung von Sm/LSm Proteinen an die U snRNAs durch eine Anzahl von Hilfsfaktoren orchestriert, die in Protein-Arginin-Methyltransferase 5 (PRMT5)- und dem Survival Motor Neuron (SMN)-Komplexen organisiert sind. Die Zusammenlagerung wird durch die PRMT5-Untereinheit pICln initiiert, die die räumliche Anordnung von Sm/LSm-Proteinen in höher-geordneten Komplexen stabilisiert. Diese werden anschließend auf den SMN-Komplex übertragen, wobei pICln verdrängt und die Verbindung mit der Sm-Seite der U snRNA sichergestellt wird. Der SMN-Komplex besteht aus dem SMN-Protein, das in einem modularen Netzwerk mit acht weiteren Proteinen (Gemins 2-8 und Unrip) interagiert. Auch wenn funktionale und strukturelle Charakterisierungen einzelner Proteinkomponenten und Module dieser Zusammenlagerungs-Maschinerie vorliegen, steht ein tiefergehendes Verständnis des strukturellen Organisation des Gesamt-Komplexes noch aus. In der vorliegenden Arbeit sollte unter Anwendung biochemischer und struktureller Techniken ein Beitrag dazu geleistet werden, die Interaktionen der verschiedenen Komponenten innerhalb des SMN-Komplexes zu verstehen, die so die dreidimensionale Organisation des SMN-Komplexes zu verstehen. Eine neuartige Kristallstruktur des humanen Gemin8:7:6-Subkomplexes bei einer Auflösung von 1.5 Å zeigt, wie der periphere Gemin7:6-Abschnitt durch den C-Terminus von Gemin8 zum SMN-Komplex dirigiert wird. In diesem Modell interagiert Gemin7 sowohl mit Gemin6 als auch Gemin8 über den N- und C-Terminus der Sm-ähnlichen Domäne. Dieser hochkonservierte Interaktionsmodus wird in der erwähnten konservierten Sequenz und dem gleichen biochemischen Verhalten ähnlicher Subkomplexe in divergenten Spezies einschließlich S. pombe und C. elegans widergespiegelt. Obwohl es keine signifikante Übereinstimmung mit der Sequenz von Sm-Proteinen gibt, weist der dimere Gemin7:6-Komplex markante strukturelle Ähnlichkeit mit dem einem Sm-Heterodimer auf. Die Annahme, der dimere Gemin7:6-Subkomplex würde als Hilfsfaktor über die direkte Interaktion mit Sm-Proteinen fungieren konnte in der vorliegenden Arbeit nicht bestätigt werden. Folglich bleibt die Funktion des dimeren Gemin7:6-Subkomplexes im Kontext der SMN-Zusammenlagerungsmaschinerie unklar. Verringerte Mengen des funktionellen SMN-Proteins sind die Ursache für die neurodegenerative Erkrankung Spinale Muskelatrophie (SMA). Das C-terminale YG-Zipper-Motiv von SMN stellt einen Hotspot für die meisten SMA-Mutationen dar. In dieser Arbeit wurde der bereits bekannten YG-Box aus H. sapiens und S. pombe eine neuartige Kristallstruktur der SMN YG-Box aus C. elegans mit einer Auflösung von 2.2 Å hinzugefügt. Zusätzlich wurde gezeigt, dass SMA-verursachende Missense-Mutationen in der YG-Box einen beträchtlichen Einfluss auf die Selbst-Interaktion von SMN haben, was aus biochemischen Versuchen mit der YG-Box aus H. sapiens und C. elegans ersichtlich wurde. Der molekulare Aufbau und das biochemische Verhalten der SMN YG-Box aus C. elegans, S. pombe und H. sapiens betont die Konservierung dieses Oligomerisierungsmotives über mehrere Organismen hinweg. Neben der Funktion als Multimerisationsdomäne dient die YG-Box von SMN auch als Interaktionsplattform für Gemin8. Eine systematische Untersuchung von SMA-verursachenden Missense-Mutationen ergab, dass die Einbindung von Gemin8 in den SMN-Komplex durch definierte Substitutionen massiv beeinflusst wird. Interessanterweise ist dieser Bindungsdefekt unabhängig vom SMN-Oligomerisierungsstatus. Demzufolge würde diese Klasse von SMA-Mutationen spezifisch die Inkorporation des Gemin7:6-Subkomplexes beeinflussen. Die Resultate dieser Arbeit bilden eine wichtige Grundlage für weitere strukturelle Untersuchungen des SMN-Komplexes über Kryo-Elektronenmikroskopie. KW - SMN complex KW - Macromolecular machine KW - Structural organisation KW - Proteom KW - Motoneuron Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-194749 ER - TY - THES A1 - Bemm, Felix Mathias T1 - Genetic foundation of unrivaled survival strategies - Of water bears and carnivorous plants - T1 - Genetische Grundlagen einzigartiger Überlebensstrategien - Über Bärtierchen und fleischfressende Pflanzen - N2 - All living organisms leverage mechanisms and response systems to optimize reproduction, defense, survival, and competitiveness within their natural habitat. Evolutionary theories such as the universal adaptive strategy theory (UAST) developed by John Philip Grime (1979) attempt to describe how these systems are limited by the trade-off between growth, maintenance and regeneration; known as the universal three-way trade-off. Grime introduced three adaptive strategies that enable organisms to coop with either high or low intensities of stress (e.g., nutrient deficiency) and environmental disturbance (e.g., seasons). The competitor is able to outcompete other organisms by efficiently tapping available resources in environments of low intensity stress and disturbance (e.g., rapid growers). A ruderal specism is able to rapidly complete the life cycle especially during high intensity disturbance and low intensity stress (e.g., annual colonizers). The stress tolerator is able to respond to high intensity stress with physiological variability but is limited to low intensity disturbance environments. Carnivorous plants like D. muscipula and tardigrades like M. tardigradum are two extreme examples for such stress tolerators. D. muscipula traps insects in its native habitat (green swamps in North and South Carolina) with specialized leaves and thereby is able to tolerate nutrient deficient soils. M. tardigradum on the other side, is able to escape desiccation of its terrestrial habitat like mosses and lichens which are usually covered by a water film but regularly fall completely dry. The stress tolerance of the two species is the central study object of this thesis. In both cases, high througput sequencing data and methods were used to test for transcriptomic (D. muscipula) or genomic adaptations (M. tardigradum) which underly the stress tolerance. A new hardware resource including computing cluster and high availability storage system was implemented in the first months of the thesis work to effectively analyze the vast amounts of data generated for both projects. Side-by-side, the data management resource TBro [14] was established together with students to intuitively approach complex biological questions and enhance collaboration between researchers of several different disciplines. Thereafter, the unique trapping abilities of D. muscipula were studied using a whole transcriptome approach. Prey-dependent changes of the transcriptional landscape as well as individual tissue-specific aspects of the whole plant were studied. The analysis revealed that non-stimulated traps of D. muscipula exhibit the expected hallmarks of any typical leaf but operates evolutionary conserved stress-related pathways including defense-associated responses when digesting prey. An integrative approach, combining proteome and transcriptome data further enabled the detailed description of the digestive cocktail and the potential nutrient uptake machinery of the plant. The published work [25] as well as a accompanying video material (https://www.eurekalert.org/pub_releases/ 2016-05/cshl-fgr042816.php; Video credit: Sönke Scherzer) gained global press coverage and successfully underlined the advantages of D. muscipula as experimental system to understand the carnivorous syndrome. The analysis of the peculiar stress tolerance of M. tardigradum during cryptobiosis was carried out using a genomic approach. First, the genome size of M. tardigradum was estimated, the genome sequenced, assembled and annotated. The first draft of M. tardigradum and the workflow used to established its genome draft helped scrutinizing the first ever released tardigrade genome (Hypsibius dujardini) and demonstrated how (bacterial) contamination can influence whole genome analysis efforts [27]. Finally, the M. tardigradum genome was compared to two other tardigrades and all species present in the current release of the Ensembl Metazoa database. The analysis revealed that tardigrade genomes are not that different from those of other Ecdysozoa. The availability of the three genomes allowed the delineation of their phylogenetic position within the Ecdysozoa and placed them as sister taxa to the nematodes. Thereby, the comparative analysis helped to identify evolutionary trends within this metazoan lineage. Surprisingly, the analysis did not reveal general mechanisms (shared by all available tardigrade genomes) behind the arguably most peculiar feature of tardigrades; their enormous stress tolerance. The lack of molecular evidence for individual tardigrade species (e.g., gene expression data for M. tardigradum) and the non-existence of a universal experimental framework which enables hypothesis testing withing the whole phylum Tardigrada, made it nearly impossible to link footprints of genomic adaptations to the unusual physiological capabilities. Nevertheless, the (comparative) genomic framework established during this project will help to understand how evolution tinkered, rewired and modified existing molecular systems to shape the remarkable phenotypic features of tardigrades. N2 - Alle lebenden Organismen verwenden Mechanismen und Rückkopplungssysteme um Reproduktion, Überlebenswahrscheinlichkeit, Abwehreffizienz und Konkurrenzfähigkeit in ihrem natürlichen Habitat zu optimieren. Evolutionäre Theorien, wie die von John Philip Grime (1979) entwickelte „universal adaptive strategy theory“ (UAST), versuchen zu beschreiben wie diese Systeme durch eine Balance zwischen Wachstum, Erhaltung und Regeneration, auch gemeinhin bekannt als universeller Dreiwege-Ausgleich, des jeweiligen Organismus limitiert sind. Grime führte dazu drei adaptive Strategien ein, die es Organismen ermöglicht sich an hohe oder niedrige Stress-Intensitäten (z.B. Nahrungsknappheit) oder umweltbedingte Beeinträchtigung (z.B. Jahreszeiten) anzupassen. Der Wettkämpfer ist in der Lage seine Konkurrenz durch eine effiziente Ressourcengewinnung zu überflügeln und ist vor allem bei niedrigem Stresslevel und minimalen umweltbedingten Beeinträchtigungen effizient (z. B. schnelles Wachstum). Ruderale Organismen hingegen durchlaufen den Leben- szyklus in kurzer Zeit und sind damit perfekt an starke umweltbedingte Beeinträchtigungen, wie zum Beispiel Jahreszeiten, angepasst. Allerdings können auch sie nur bei niedrigen Stresslevel effizient wachsen. Die letzte Gruppe von Organismen, die Stresstoleranten sind in der Lage sich an hohen Stressintensitäten mithilfe extremer physiologischer Variabilität anzupassen, können das allerdings nur in Umgebungen mit niedrigen umweltbedingten Beeinträchtigungen. Fleischfressende Pflanzen wie die Venusfliegenfalle (D. muscipula) oder Bärtierchen (M. tardigradum) sind zwei herausragende Beispiele für stresstolerante Organismen. Die Venusfliegenfalle ist in der Lage Insekten mit spezialisierten Blätter, welche eine einzigartige Falle bilden, zu fangen. Die Pflanze kompensiert so die stark verminderte Mengen an wichtigen Makronährstoffen (z.B. Stickstoff) in den Sümpfen von Nord- und Süd-Carolina. Bärtierchen dagegen sind in der Lage in schnell austrocknenden Habitaten wie Moosen oder Flechten, die normalerweise mit einem Wasserfilm überzogen sind, durch eine gesteuerte Entwässerung ihres Körpers zu überleben. Die Stresstoleranz beider Spezies ist zentraler Forschungsschwerpunkt dieser Dissertation. In beiden Fällen wer- den Hochdurchsatz-Methoden zur Sequenzierung verwendet um genomische (Bärtierchen) sowie transkriptomische (Venusfliegenfalle) Anpassungen zu identifizieren, die der enorem Stresstoleranz zugrunde liegen. Um den erhöhten technischen Anforderungen der Datenanal- ysen beider Projekte Rechnung zu tragen wurde in den ersten Monaten der Dissertation eine neue zentrale Rechenumgebung und ein dazugehöriges Speichersystem etabliert. Parallel wurde die Datenmanagementplattform TBro [14] zusammen mit Studenten aufgesetzt, um komplexe biologische Fragestellung mit einem fachübergreifendem Kollegium zu bearbeiten. Danach wurden die einzigartigen Fangfähigkeiten der Venusfliegenfalle mittels einem tran- skriptomischen Ansatz untersucht. Vor allem wurden transkriptionelle Änderungen infolge eines Beutefangs sowie gewebespezifische Aspekte der ruhenden Pflanzen untersucht. Die Analyse zeigte deutlich, dass die Fallen der fleischfressenden Pflanze immer noch Merkmale von typischen „grünen“ Blättern aufweisen. Während des Beutefangs und -verdauens jedoch wird eine Vielzahl an evolutionär konservierten Systemen aktiviert, die bisher nur mit Stres- santworten und zellulärer Verteidigung in Verbindung gebracht worden sind. Die Integration von proteomischen und transkriptomischen Hochdurchsatzdaten ermöglichte es zudem den Verdauungssaft der Venusfliegenfalle genaustens zu beschreiben und wichtige Komponenten der Aufnahmemaschinerie zu identifizieren. Die wissenschaftliche Arbeit [25] und das beglei- tende Videomaterial (https://www.eurekalert.org/pub_releases/2016-05/cshl-fgr042816.php; Video credit: Sönke Scherzer) erfreute sich einer breiten Berichterstattung in den Medien und unterstreicht die Vorteile der Venusfliegenfalle als experimentelles System um fleis- chfressende Pflanzen besser zu verstehen. Die genomische Analyse des Bärtierchen (M. tardigradum) zielte auf die außerordentliche Stresstoleranz, vor allem auf die Kryptobiose, einen Zustand in dem Stoffwechselvorgänge extrem reduziert sind, ab. Dazu wurden das komplette genetische Erbgut (Genom) entschlüsselt. Die Größe des Genomes wurde bes- timmt und das Erbgut mittels Sequenzierung entschlüsselt. Die gewonnenen Daten wurden zu einer kontinuierlichen Sequenz zusammengesetzt und Gene identifiziert. Der dabei etablierte Arbeitsablauf wurde verwendet um ein weiteres Bärtierchengenom genau zu überprüfen. Im Rahmen dieser Analyse stellte sich heraus, dass eine große Anzahl an Kontaminationen im Genom von H. dujardini vorhanden sind [27]. Das neu etablierte Genom von M. tardigradum wurde im folgenden verwendet um einen speziesübergreifenden Vergleich dreier Bärtierchen und aller Spezies aus der Metazoadatenbank von Ensembl durchzuführen. Die Analyse zeigte, dass Bärtierchengenome sehr viel Ähnlichkeit zu den bereits veröffentlichten Genomen aus dem Überstamm der Urmünder (Protostomia) aufweisen. Die erstmalige Verfügbarkeit aller Bärtierchengenome ermöglichte es zudem, das Phylum der Bärtierchen als Schwester der Nematoden mittels einer phylogenomische Analyse zu platzieren. Die vergleichende Anal- yse identifizierte außerdem zentrale evolutionäre Trends, vor allem einen enormen Verlust an Genen in dieser Linie der Metazoa. Die Analyse ermöglichte es aber nicht, generelle Mechanismen, die zur enormen Stresstoleranz in Bärtierchen führen, artübergreifend zu identifizieren. Vor allem das Fehlen von weiteren molekularen Daten für einzelne Bärtierchen- spezies (z.B. transkriptionelle Daten für M. tardigradum) machten es unmöglich die wenigen genomische Adaptionen mit den physiologischen Besonderheiten der Bärtierchen in Deckung zu bringen. Nichtsdestotrotz konnten die vergleichenden Analysen zeigen, dass Evolution auch innerhalb der Bärtierchen verschiedenste Systeme neu zusammensetzt, neue Funktionen erschafft oder bestehenden Systeme modifiziert und damit die außerordentliche phänotypis- che Variabilität ermöglicht. KW - transcriptome KW - venus KW - flytrap KW - defense KW - secretion KW - jasmonate KW - Bärtierchen KW - Genom KW - Stressresistenz KW - Venusfliegenfalle KW - Proteom KW - Transkriptom Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157109 ER -