TY - JOUR A1 - Schmitt, Dominique A1 - Funk, Natalia A1 - Blum, Robert A1 - Asan, Esther A1 - Andersen, Lill A1 - Rülicke, Thomas A1 - Sendtner, Michael A1 - Buchner, Erich T1 - Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons JF - Histochemistry and Cell Biology N2 - Synapse-associated protein 1 (Syap1/BSTA) is the mammalian homologue of Sap47 (synapse-associated protein of 47 kDa) in Drosophila. Sap47 null mutant larvae show reduced short-term synaptic plasticity and a defect in associative behavioral plasticity. In cultured adipocytes, Syap1 functions as part of a complex that phosphorylates protein kinase B alpha/Akt1 (Akt1) at Ser\(^{473}\) and promotes differentiation. The role of Syap1 in the vertebrate nervous system is unknown. Here, we generated a Syap1 knock-out mouse and show that lack of Syap1 is compatible with viability and fertility. Adult knock-out mice show no overt defects in brain morphology. In wild-type brain, Syap1 is found widely distributed in synaptic neuropil, notably in regions rich in glutamatergic synapses, but also in perinuclear structures associated with the Golgi apparatus of specific groups of neuronal cell bodies. In cultured motoneurons, Syap1 is located in axons and growth cones and is enriched in a perinuclear region partially overlapping with Golgi markers. We studied in detail the influence of Syap1 knockdown and knockout on structure and development of these cells. Importantly, Syap1 knockout does not affect motoneuron survival or axon growth. Unexpectedly, neither knockdown nor knockout of Syap1 in cultured motoneurons is associated with reduced Ser\(^{473}\) or Thr\(^{308}\) phosphorylation of Akt. Our findings demonstrate a widespread expression of Syap1 in the mouse central nervous system with regionally specific distribution patterns as illustrated in particular for olfactory bulb, hippocampus, and cerebellum. KW - Protein kinase B KW - Spinal Muscular-arthropy KW - Rictor-mTOR complex KW - Neurotrophic factors KW - Plasma-membrane KW - Axon growth KW - SAP47 gene KW - Phosphorylation KW - Drosophilia KW - Cells KW - BSTA KW - Viability KW - Brain KW - Syap1 localization KW - Glutamatergic synapses KW - PKB/Akt phosphorylation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187258 VL - 146 IS - 4 ER - TY - JOUR A1 - Kleber, Jörg A1 - Chen, Yi-Chun A1 - Michels, Birgit A1 - Saumweber, Timo A1 - Schleyer, Michael A1 - Kähne, Thilo A1 - Buchner, Erich A1 - Gerber, Bertram T1 - Synapsin is required to "boost" memory strength for highly salient events JF - Learning and Memory N2 - Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn\(^{97}\)) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience-in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47. KW - mushroom body KW - Kenyon cells KW - larval drosophila KW - Sap47 KW - phosphorylation KW - synaptic vesicles KW - short-term memory Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191440 VL - 23 IS - 1 ER -