TY - JOUR A1 - Lundt, Nils A1 - Klembt, Sebastian A1 - Cherotchenko, Evgeniia A1 - Betzold, Simon A1 - Iff, Oliver A1 - Nalitov, Anton V. A1 - Klaas, Martin A1 - Dietrich, Christof P. A1 - Kavokin, Alexey V. A1 - Höfling, Sven A1 - Schneider, Christian T1 - Room-temperature Tamm-plasmon exciton-polaritons with a WSe\(_{2}\) monolayer JF - Nature Communications N2 - Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light–matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe\(_{2}\), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy–momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons. KW - optics and photonics KW - two-dimensional materials KW - electronic properties and materials Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169470 VL - 7 ER - TY - JOUR A1 - He, Yu-Ming A1 - Iff, Oliver A1 - Lundt, Nils A1 - Baumann, Vasilij A1 - Davanco, Marcelo A1 - Srinivasan, Kartik A1 - Höfling, Sven A1 - Schneider, Christian T1 - Cascaded emission of single photons from the biexciton in monolayered WSe\(_{2}\) JF - Nature Communications N2 - Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe\(_{2}\), sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe\(_{2}\), which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors. KW - lasers KW - LED KW - quantum dots KW - light sources Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169363 VL - 7 ER -