TY - THES A1 - Müller, Dominik Dennis T1 - Laborbasierte Nano-Computertomographie mit hoher Energie für die Materialcharakterisierung und Halbleiterprüfung in Simulation und Anwendung T1 - Laboratory Based Nano Computed Tomography with Higher Photon Energy for Materials Characterization and Semiconductor Analysis in Simulation and Practical Application N2 - Verschiedene Konzepte der Röntgenmikroskopie haben sich mittlerweile im Labor etabliert und ermöglichen heute aufschlussreiche Einblicke in eine Vielzahl von Probensystemen. Der „Labormaßstab“ bezieht sich dabei auf Analysemethoden, die in Form von einem eigenständigen Gerät betrieben werden können. Insbesondere sind sie unabhängig von der Strahlerzeugung an einer Synchrotron-Großforschungseinrichtung und einem sonst kilometergroßen Elektronen-speicherring. Viele der technischen Innovationen im Labor sind dabei ein Transfer der am Synchrotron entwickelten Techniken. Andere wiederum basieren auf der konsequenten Weiterentwicklung etablierter Konzepte. Die Auflösung allein ist dabei nicht entscheidend für die spezifische Eignung eines Mikroskopiesystems im Ganzen. Ebenfalls sollte das zur Abbildung eingesetzte Energiespektrum auf das Probensystem abgestimmt sein. Zudem muss eine Tomographieanalage zusätzlich in der Lage sein, die Abbildungsleistung bei 3D-Aufnahmen zu konservieren. Nach einem Überblick über verschiedene Techniken der Röntgenmikroskopie konzentriert sich die vorliegende Arbeit auf quellbasierte Nano-CT in Projektionsvergrößerung als vielversprechende Technologie zur Materialanalyse. Hier können höhere Photonenenergien als bei konkurrierenden Ansätzen genutzt werden, wie sie von stärker absorbierenden Proben, z. B. mit einem hohen Anteil von Metallen, zur Untersuchung benötigt werden. Das bei einem ansonsten idealen CT-Gerät auflösungs- und leistungsbegrenzende Bauteil ist die verwendete Röntgen-quelle. Durch konstruktive Innovationen sind hier die größten Leistungssprünge zu erwarten. In diesem Zuge wird erörtert, ob die Brillanz ein geeignetes Maß ist, um die Leistungsfähigkeit von Röntgenquellen zu evaluieren, welchen Schwierigkeiten die praktische Messung unterliegt und wie das die Vergleichbarkeit der Werte beeinflusst. Anhand von Monte-Carlo-Simulationen wird gezeigt, wie die Brillanz verschiedener Konstruktionen an Röntgenquellen theoretisch bestimmt und miteinander verglichen werden kann. Dies wird am Beispiel von drei modernen Konzepten von Röntgenquellen demonstriert, welche zur Mikroskopie eingesetzt werden können. Im Weiteren beschäftigt sich diese Arbeit mit den Grenzen der Leistungsfähigkeit von Transmissionsröntgenquellen. Anhand der verzahnten Simulation einer Nanofokus-Röntgenquelle auf Basis von Monte-Carlo und FEM-Methoden wird untersucht, ob etablierte Literatur¬modelle auf die modernen Quell-konstruktionen noch anwendbar sind. Aus den Simulationen wird dann ein neuer Weg abgeleitet, wie die Leistungsgrenzen für Nanofokus-Röntgenquellen bestimmt werden können und welchen Vorteil moderne strukturierte Targets dabei bieten. Schließlich wird die Konstruktion eines neuen Nano-CT-Gerätes im Labor-maßstab auf Basis der zuvor theoretisch besprochenen Nanofokus-Röntgenquelle und Projektionsvergrößerung gezeigt, sowie auf ihre Leistungsfähigkeit validiert. Es ist spezifisch darauf konzipiert, hochauflösende Messungen an Materialsystemen in 3D zu ermöglichen, welche mit bisherigen Methoden limitiert durch mangelnde Auflösung oder Energie nicht umsetzbar waren. Daher wird die praktische Leistung des Gerätes an realen Proben und Fragestellungen aus der Material¬wissenschaft und Halbleiterprüfung validiert. Speziell die gezeigten Messungen von Fehlern in Mikrochips aus dem Automobilbereich waren in dieser Art zuvor nicht möglich. N2 - Various concepts of X-ray microscopy have become established in laboratories. Nowadays, they allow insightful analysis of a wide range of sample systems. In this context, "laboratory scale" refers to the analytical methods that operate as a stand-alone instrument. They are independent from beam generation at a large-scale synchrotron research facility with a kilometer-sized electron storage ring. Many of the technical innovations in the laboratory are transferred techniques developed at the synchrotron. Others are based on the continuous further development of previously established concepts. By itself, resolution is not decisive for the specific suitability of a microscopy system in general. The energy spectrum used for imaging should also be matched to the specimen and a tomography system must be able to preserve the imaging performance for 3D images. After an overview of different X-ray microscopy techniques, this work examines how source-based nano-CT in projection magnification is a promising technology for materials analysis. Here, higher photon energies can be used than in competing approaches as required by more absorbent samples for examination, such as those with a high metal content. The core component limiting resolution and performance in an otherwise ideal CT device is the X-ray source used. The greatest leaps in imaging performance can be expected through design innovations in the X ray source. Therefore, In the course of this work, it is discussed when brilliance is and is not an appropriate measure to evaluate the performance of X-ray sources, what difficulties practical measurement is subject to and how this affects the comparability of values. Monte Carlo simulations show how the brilliance of different designs on X-ray sources can be theoretically determined and compared, and this is demonstrated by the example of three modern concepts of X-ray sources, which can be used for microscopy. Next, this thesis considers the limits of the performance of transmission X-ray sources. Using the coupled simulation of a nano focus X-ray source based on Monte Carlo and FEM methods, this thesis investigates whether established literature models are still applicable to these modern source designs. The simulations are then used to derive a new way to determine the performance limits for nano focus X-ray sources and the advantage of modern targets made of multiple layers. Then, a new laboratory-scale nano-CT device based on the nano focus X-ray source and projection magnification is theoretically discussed before it is presented with an evaluation of its performance. It is specifically designed to enable high-resolution measurements on material systems in 3D, which were not feasible with previous methods as they were limited by a lack of resolution or energy. Therefore, the practical performance of the device can finally be validated on real samples and issues from materials science and semiconductor inspection. The shown measurements of defects in automotive microchips in this way were not previously possible. KW - Computertomografie KW - Röntgenquelle KW - Mikroelektronik KW - Simulation KW - Nano-CT KW - Röntgenquellen KW - Materialuntersuchung KW - Geräteentwicklung KW - High Resolution KW - Monte-Carlo KW - Semiconductor KW - Material Science KW - Computed Tomography KW - X-Ray KW - CT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313380 ER - TY - THES A1 - Vaegler, Sven T1 - Entwicklung eines neuen vorwissensbasierten Bildrekonstruktionsalgorithmus für die Cone-Beam-CT Bildgebung in der Strahlentherapie T1 - Development of a new prior knowledge based image reconstruction algorithm for the cone-beam-CT in radiation therapy N2 - In der heutigen Strahlentherapie kann durch eine am Linearbeschleuniger integrierte Röntgenröhre eine 3D-Bildgebung vor der Bestrahlung durchgeführt werden. Die sogenannte Kegel-Strahl-CT (Cone-Beam-CT, CBCT) erlaubt eine präzise Verifikation der Patientenlagerung sowie ein Ausgleich von Lagerungsungenauigkeiten. Dem Nutzen der verbesserten Patientenlagerung steht jedoch bei täglicher Anwendung eine erhöhte, nicht zu vernachlässigbare Strahlenexposition des Patienten gegenüber. Eine Verringerung des Dosisbeitrages bei der CBCT-Bildgebung lässt sich durch Reduzierung des Stroms zur Erzeugung der Röntgenstrahlung sowie durch Verringerung der Anzahl an Projektionen erreichen. Die so aufgenommen Projektionen lassen sich dann aber nur durch aufwendige Rekonstruktionsverfahren zu qualitativ hochwertigen Bilddatensätzen rekonstruieren. Ein Verfahren, dass für die Rekonstruktion vorab vorhandene Vorwissensbilder verwendet, ist der Prior-Image- Constrained-Compressed-Sensing-Rekonstruktionsalgorithmus (PICCS). Die Rekonstruktionsergebnisse des PICCS-Verfahrens übertreffen die Ergebnisse des auf den konventionellen Feldkamp-Davis-Kress-Algorithmus (FDK) basierenden Verfahrens, wenn nur eine geringe Anzahl an Projektionen zur Verfügung steht. Allerdings können bei dem PICCS-Verfahren derzeit keine großen Variationen in den Vorwissensbildern berücksichtigt werden und führen zu einer geringeren Bildqualität. Diese Variationen treten insbesondere durch anatomische Veränderungen wie Tumorverkleinerung oder Gewichtsveränderungen auf. Das Ziel der vorliegenden Arbeit bestand folglich darin, einen neuen vorwissensbasierten Rekonstruktionsalgorithmus zu entwickeln, der auf Basis des PICCS-Verfahrens zusätzlich die Verwendung von lokalen Verlässlichkeitsinformationen über das Vorwissensbild ermöglicht, um damit die Variationen in den Vorwissensbildern bei der Rekonstruktion entsprechend berücksichtigen zu können. Die grundlegende Idee des neu entwickelten Rekonstruktionsverfahrens ist die Annahme, dass die Vorwissensbilder aus Bereichen mit kleinen und großen Variationen bestehen. Darauf aufbauend wird eine Gewichtungsmatrix erzeugt, die die Stärke der Variationen des Vorwissens im Rekonstruktionsalgorithmus berücksichtigt. In Machbarkeitsstudien wurde das neue Verfahren hinsichtlich der Verbesserung der Bildqualität unter Berücksichtigung gängiger Dosisreduzierungsstrategien untersucht. Dazu zählten die Reduktion der Anzahl der Projektionen, die Akquisition von Projektionen mit kleinerer Fluenz sowie die Verkleinerung des Akquisitionsbereiches. Die Studien erfolgten an einem Computerphantom sowie insbesondere an experimentellen Daten, die mit dem klinischen CBCT aufgenommen worden sind. Zum Vergleich erfolgte die Rekonstruktion mit dem Standardverfahren basierend auf der gefilterten Rückprojektion, dem Compressed Sensing- sowie dem konventionellen PICCS-Verfahren. Das neue Verfahren konnte in den untersuchten Fällen Bilddatensätze mit verbesserter bis ausgezeichneter Qualität rekonstruieren, sogar dann, wenn nur eine sehr geringe Anzahl an Projektionen oder nur Projektionen mit starkem Rauschen zur Verfügung standen. Demgegenüber wiesen die Rekonstruktionsergebnisse der anderen Algorithmen starke Artefakte auf. Damit eröffnet das neu entwickelte Verfahren die Möglichkeit durch die Integration von Zuverlässigkeitsinformationen über die vorhandenen Vorwissensbildern in den Rekonstruktionsalgorithmus, den Dosisbeitrag bei der täglichen CBCT-Bildgebung zu minimieren und eine ausgezeichnete Bildqualität erzielen zu können. N2 - The treatment of cancer in radiation therapy is achievable today by techniques that enable highly conformal dose distributions and steep dose gradients. In order to avoid mistreatment, these irradiation techniques have necessitated enhanced patient localization techniques. With an integrated x-ray tube at modern linear accelerators kV-projections can be acquired over a sufficiently large angular space and can be reconstructed to a volumetric image data set from the current situation of the patient prior to irradiation. The so-called Cone-Beam-CT (CBCT) allows a precise verification of patient positioning as well as adaptive radiotherapy. The benefits of an improved patient positioning due to a daily performed CBCT's is contrary to an increased and not negligible radiation exposure of the patient. In order to decrease the radiation exposure, substantial research effort is focused on various dose reduction strategies. Prominent strategies are the decrease of the charge per projection, the reduction of the number of projections as well as the reduction of the acquisition space. Unfortunately, these acquisition schemes lead to images with degraded quality with the widely used Feldkamp-Davis-Kress image reconstruction algorithm. More sophisticated image reconstruction techniques can deal with these dose-reduction strategies without degrading the image quality. A frequently investigated method is the image reconstruction by minimizing the total variation (TV), which is also known as Compressed Sensing (CS). A Compressed Sensing-based reconstruction framework that includes prior images into the reconstruction algorithm is the Prior-Image-Constrained- Compressed-Sensing algorithm (PICCS). The images reconstructed by PICCS outperform the reconstruction results of the conventional Feldkamp-Davis-Kress algorithm (FDK) based method if only a small number of projections are available. However, a drawback of PICCS is that major deviations between prior image data sets and the follow up reconstructed images are not appropriate considered so far. These deviations may result from changes in anatomy including tumour shrinkage and loss of weight and may result in a degraded image quality of the reconstructed images. Deformable registration methods that adapt the prior images adequately can compensate this shortcoming of PICCS. Such registration techniques, however, suffer from limited accurateness and much higher computation time for the overall reconstruction process. Therefore, the aim of this thesis was to develop a new knowledge-based reconstruction algorithm that incorporates additionally local dependent reliability information about the prior images into reconstruction algorithm. The basic idea of the new algorithm is the assumption that the prior images are composed of areas with large and of areas with small deviations. Accordingly, the areas of the prior image were assigned as variable where substantial deformations due to motion or change in structure over the time series were expected. Hence, these regions were not providing valuable structural information for the anticipated result anymore. In contrast, “a priori” information was assigned to structurally stationary areas where no changes were expected. Based on this composition, a weighting matrix was generated that considers the strength of these variations during reconstruction. The new algorithm was tested in different feasibility studies to common dose reduction strategies. These dose reduction strategies includes the reduction of the number of projections, the acquisition of projections with strong noise and the reduction of the acquisition space. The main aim of this work was to demonstrate the gain of image quality when prior images with major variations are used compared to standard reconstruction techniques. The studies were performed with a computer phantom, and in particular with experimental data that have been acquired with the clinical CBCT. The new reconstruction framework yields images with substantially improved quality even when only a very small number of projections or projections with high noise were available. These images contained less streaking, blurring and inaccurately reconstructed structures compared to the images reconstructed by FDK, CS and conventional PICCS. In conclusion, the new developed reconstruction framework indicate the potential to lowering the radiation dose to the patient due to daily CBCT imaging while maintaining good image quality. KW - Strahlentherapie KW - Computertomografie KW - Bildrekonstruktion KW - Compressed Sensing KW - Cone Beam CT KW - Prior Knowledge KW - PICCS KW - Komprimierte Abtastung KW - Vorwissen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137445 ER -