TY - JOUR A1 - Kurz, Felix T. A1 - Kampf, Thomas A1 - Buschle, Lukas R. A1 - Schlemmer, Heinz-Peter A1 - Bendszus, Martin A1 - Heiland, Sabine A1 - Ziener, Christian H. T1 - Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic perturbers JF - Frontiers in Physics N2 - In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin dephasing in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows deriving analytical expressions of the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times. KW - magnetized sphere/cylinder KW - magnetic susceptibility KW - correlation function KW - diffusion KW - magnetic resonance imaging Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190604 SN - 2296-424X VL - 4 ER - TY - JOUR A1 - Kurz, Felix T. A1 - Kampf, Thomas A1 - Buschle, Lukas R. A1 - Schlemmer, Heinz-Peter A1 - Heiland, Sabine A1 - Bendszus, Martin A1 - Ziener, Christian H. T1 - Microstructural Analysis of Peripheral Lung Tissue through CPMG Inter-Echo Time R2 Dispersion JF - PLoS One N2 - Since changes in lung microstructure are important indicators for (early stage) lung pathology, there is a need for quantifiable information of diagnostically challenging cases in a clinical setting, e.g. to evaluate early emphysematous changes in peripheral lung tissue. Considering alveoli as spherical air-spaces surrounded by a thin film of lung tissue allows deriving an expression for Carr-Purcell-Meiboom-Gill transverse relaxation rates R-2 with a dependence on inter-echo time, local air-tissue volume fraction, diffusion coefficient and alveolar diameter, within a weak field approximation. The model relaxation rate exhibits the same hyperbolic tangent dependency as seen in the Luz-Meiboom model and limiting cases agree with Brooks et al. and Jensen et al. In addition, the model is tested against experimental data for passively deflated rat lungs: the resulting mean alveolar radius of RA = 31.46 \(\pm\) 13.15 \(\mu\)m is very close to the literature value (similar to 34 \(\mu\)m). Also, modeled radii obtained from relaxometer measurements of ageing hydrogel foam (that mimics peripheral lung tissue) are in good agreement with those obtained from mu CT images of the same foam (mean relative error: 0.06 \(\pm\) 0.01). The model's ability to determine the alveolar radius and/or air volume fraction will be useful in quantifying peripheral lung microstructure. KW - transverse relaxation KW - number KW - HE-3 diffusion MRI KW - magnetic-resonance behavior KW - hyperpolarized HE-3 KW - Bessle functions KW - self-diffusion KW - alveolar KW - field KW - morphometry Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138345 VL - 10 IS - 11 ER - TY - THES A1 - Ziener, Christian H. T1 - Spindephasierung im Kroghschen Kapillarmodell des Myokards T1 - Spin Dephasing in Krogh's Capillary Model of the Myocardium N2 - Der Zusammenhang zwischen den Parametern der Mikrostruktur des Myokards und der Spindephasierung wird hergestellt. Zur Beschreibung der Mikrostruktur des Myokards wurde das Kroghsche Kapillarmodell genutzt. In diesem Modell wird das Myokard auf eine einzige Kapillare reduziert, die von einem konzentrischen Gewebszylinder umgeben ist. In dem Gewebszylinder findet die Dephasierung und Diffusion statt. Mathematisch wird die Dephasierung durch die Bloch-Torrey-Gleichung beschrieben. Experimentell wurde der Signal-Zeit-Verlauf mittels einer PRESS-Sequenz und einer Gradienten-Echo-Sequenz gemessen. Mit den in dieser Arbeit vorgestellten Methoden ist der Zusammenhang zwischen Kapillarradius und Freien Induktionszerfall bekannt. N2 - The relation between the parameters of the microscopic structure of the myocardium and the spin dephasing is analyzed. The microscopic structure of the myocardium is described in terms of Krogh's capillary model. In this model the myocardium is reduced to a single capillary which is surrounded by a concentric tissue cylinder. In the tissue cylinder the dephasing and diffusion process occurs. Mathematically the dephasing process is described by the Bloch-Torrey-equation. Experimentally the Signal-time-decay was measured using a PRESS-sequence and a gradient-echo-sequence. Using the methods provided in this work, the relation between the capillary radius and the measured free induction decay can be given. KW - Herzmuskel KW - Magnetische Resonanz KW - Kernspinrelaxation KW - Myocardium KW - Dephasing KW - Magnetic Resonance Imaging Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73762 ER - TY - THES A1 - Ziener, Christian H. T1 - Suszeptibilitätseffekte in der Kernspinresonanzbildgebung T1 - Susceptibility effects in nuclear magnetic resonance imaging N2 - Das Dephasierungsverhalten und die daraus resultierende Relaxation der Magnetisierung sind Grundlage aller auf der Kernspinresonanz basierenden bildgebenden Verfahren. Das erhaltene Signalder präzedierenden Protonen wird wesentlich von den Eigenschaften des untersuchten Gewebes bestimmt. Insbesondere die durch magnetisierte Stoffe wie z. B. desoxygeniertes Blut (BOLD-Effekt) oder magnetische Nanopartikel erzeugten Suszeptibilitätssprünge gewinnen zunehmend Bedeutung in der biomedizinischen Bildgebung. In der vorliegenden Arbeit wurden die Einflüsse von Feldinhomogenitäten auf das NMR-Signal untersucht. N2 - The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. KW - Magnetische Kernresonanz KW - Magnetische Suszeptibilität KW - NMR-Bildgebung KW - nuclear magnetic resonance KW - magnetic susceptibility KW - magnetic resonance imaging Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35425 ER - TY - JOUR A1 - Ziener, Christian H. A1 - Kurz, Felix T. A1 - Buschle, Lukas R. A1 - Kampf, Thomas T1 - Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions JF - SpringerPlus N2 - The cylindrical Bessel differential equation and the spherical Bessel differential equation in the interval R\(\leq\)r\(\leq\)\(\gamma\)R with Neumann boundary conditions are considered. The eigenfunctions are linear combinations of the Bessel function \(\Phi\)\(_{n,ν}\)(r) = Y'\(_{ν}\) (\(\lambda\)\(_{n,ν}\))J\(_{ν}\)(\(\lambda\)\(_{n,ν}\) r/R) - J'\(_{ν}\)(\(\lambda\)\(_{n,ν}\))Y\(_{ν}\)(\(\lambda\)\(_{n,ν}\)r/R) or linear combinations of the spherical Bessel functions \(\psi\)\(_{m,ν}\)(r) = y'\(_{ν}\)(\(\lambda\)\(_{m,ν}\))j\(_{ν}\)(\(\lambda\)\(_{m,ν}\)r/R) - j'\(_{ν}\)(\(\lambda\)\(_{m,ν}\))y\(_{ν}\)(\(\lambda\)\(_{m,ν}\)r/R). The orthogonality relations with analytical expressions for the normalization constant are given. Explicit expressions for the Lommel integrals in terms of Lommel functions are derived. The cross product zeros Y'\(_{ν}\)\(\lambda\)\(_{n,ν}\))J'\(_{ν}\)(\(\gamma\)\(\lambda\)\(_{n,ν}\))- J'\(_{ν}\)(\(\lambda\)\(_{n,ν}\))Y'\(_{ν}\)(\(\gamma\)\(\lambda\)\(_{n,ν}\)) = 0 and y'\(_{ν}\)(\(\lambda\)\(_{m,ν}\))j'\(_{ν}\)(\(\gamma\)\(\lambda\)\(_{m,ν}\)) - j'\(_{ν}\)(\(\lambda\)\(_{m,ν}\))y'\(_{ν}\)(\(\gamma\)\(\lambda\)\(_{m,ν}\)) = 0 are considered in the complex plane for real as well as complex values of the index ν and approximations for the exceptional zero \(\lambda\)\(_{1,ν}\) are obtained. A numerical scheme based on the discretization of the twodimensional and three-dimensional Laplace operator with Neumann boundary conditions is presented. Explicit representations of the radial part of the Laplace operator in form of a tridiagonal matrix allow the simple computation of the cross product zeros. KW - magnetic field relaxation KW - time inhomogeneities KW - model Bessel function KW - linear combination KW - integral Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151432 VL - 4 IS - 390 ER -