TY - THES A1 - Budiman, Yudha Prawira T1 - Applications of Fluorinated Aryl Boronates in Organic Synthesis T1 - Die Anwendungen von fluorinierten Arylboronaten in der organischen Synthese N2 - Fluorinated compounds are an important motif, particularly in pharmaceuticals, as one-third of the top performing drugs have fluorine in their structures. Fluorinated biaryls also have numerous applications in areas such as material science, agriculture, crystal engineering, supramolecular chemistry, etc. Thus, the development of new synthetic routes to fluorinated chemical compounds is an important area of current research. One promising method is the borylation of suitable precursors to generate fluorinated aryl boronates as versatile building blocks for organic synthesis. Chapter 1 In this chapter, the latest developments in the synthesis, stability issues, and applications of fluorinated aryl boronates in organic synthesis are reviewed. The catalytic synthesis of fluorinated aryl boronates using different methods, such as C–H, C–F, and C–X (X = Cl, Br, I, OTf) borylations are discussed. Further studies covering instability issues of the fluorinated boronate derivatives, which are accelerated by ortho-fluorine, have been reported, and the applications of these substrates, therefore, need special treatment. Numerous groups have reported methods to employ highly fluorinated aryl boronates that anticipate the protodeboronation issue; thus, polyfluorinated aryl boronates, especially those containing ortho-fluorine substituents, can be converted into chloride, bromide, iodide, phenol, carboxylic acid, nitro, cyano, methyl esters, and aldehyde analogues. These substrates can be applied in many cross-coupling reactions, such as the Suzuki-Miyaura reaction with aryl halides, the Chan-Evans-Lam C–N reaction with aryl amines or nitrosoarenes, C–C(O) reactions with N-(aryl-carbonyloxy)phthalamides or thiol esters (Liebskind-Srogl cross-coupling), and oxidative coupling reactions with terminal alkynes. Furthermore, the difficult reductive elimination from the highly stable complex [PdL2(2,6-C6F2+nH3-n)2] was the next challenge to be targeted in the homocoupling of 2,6-di-fluoro aryl pinacol boronates, and it has been solved by conducting the reaction in arene solvents that reduce the energy barrier in this step as long as no coordinating solvent or ancillary ligand is employed. Chapter 2 In this chapter, phenanthroline-ligated copper complexes proved to be efficient catalysts for the Suzuki-Miyaura cross-coupling of highly fluorinated aryl boronate esters (ArF–Bpin) with aryl iodides or bromides. This newly developed method is an attractive alternative to the traditional methods as copper is an Earth-abundant metal, less toxic, and cheaper compared to the traditional methods which commonly required palladium catalysts, and silver oxide that is also often required in stoichiometric amounts. A combination of 10 mol% copper iodide and 10 mol% phenanthroline, with CsF as a base, in DMF, at 130 ˚C, for 18 hours is efficient to cross-couple fluorinated aryl pinacol boronates with aryl iodides to generate cross-coupled products in good to excellent yields. This method is also viable for polyfluorophenyl borate salts such as pentafluorophenyl-BF3K. Notably, employing aryl bromides instead of aryl iodides for the coupling with fluorinated aryl–Bpin compounds is also possible; however, increased amounts of CuI/phenanthroline catalyst is necessary, in a mixture of DMF and toluene (1:1). A diverse range of π···π stacking interactions is observed in the cross-coupling products partly perfluorinated biaryl crystals. They range from arene–perfluoroarene interactions (2-(perfluorophenyl)naphthalene and 2,3,4-trifluorobiphenyl) to arene–arene (9-perfluorophenyl)anthracene) and perfluoroarene–perfluoroarene (2,3,4,5,6-pentafluoro-2’methylbiphenyl) interactions. Chapter 3 In this chapter, the efficient Pd-catalyzed homocoupling reaction of aryl pinacol pinacol boronates (ArF–Bpin) that contain two ortho-fluorines is presented. The reaction must be conducted in a “noncoordinating” solvent such as toluene, benzene, or m-xylene and, notably, stronger coordinating solvents or ancillary ligands have to be avoided. Thus, the Pd center becomes more electron deficient and the reductive elimination becomes more favorable. The Pd-catalyzed homocoupling reaction of di-ortho-fluorinated aryl boronate derivatives is difficult in strongly coordinating solvents or in the presence of strong ancillary ligands, as the reaction stops at the [PdL2(2,6-C6F2+nH3-n)2] stage after the transmetalations without the reductive elimination taking place. It is known that the rate of reductive elimination of Ar–Ar from [ML2(Ar)(Ar)] complexes containing group-10 metals decreases in the order Arrich–Arpoor > Arrich–Arrich > Arpoor–Arpoor. Furthermore, reductive elimination of the most electron-poor diaryls, such as C6F5–C6F5, from [PdL2(C6F5)2] complexes is difficult and has been a challenge for 50 years, due to their high stability as the Pd–Caryl bond is strong. Thus, the Pd-catalyzed homocoupling of perfluoro phenyl boronates is found to be rather difficult.   Further investigation showed that stoichiometric reactions of C6F5Bpin, 2,4,6-trifluorophenyl–Bpin, or 2,6-difluorophenyl–Bpin with palladium acetate in MeCN stops at the double transmetalation step, as demonstrated by the isolation of cis-[Pd(MeCN)2(C6F5)2], cis-[Pd(MeCN)2(2,4,6-C6F3H2)2], and cis-[Pd(MeCN)2(2,6-C6F2H3)2] in quantitative yields. Thus, it can be concluded that the reductive elimination from diaryl-palladium complexes containing two ortho-fluorines in both aryl rings, is difficult even in a weakly coordinating solvent such as MeCN. Therefore, even less coordinating solvents are needed to make the Pd center more electron deficient. Reactions using “noncoordinating” arene solvents such as toluene, benzene, or m-xylene were conducted and found to be effective for the catalytic homocoupling of 2,6-C6F2+nH3-nBpin. The scope of the reactions was expanded. Using toluene as the solvent, the palladium-catalyzed homocoupling of ArF–Bpin derivatives containing one, two or no ortho-fluorines gave the coupled products in excellent yields without any difficulties. DFT calculations at the B3LYP-D3/def2-TZVP/6-311+g(2d,p)/IEFPCM // B3LYP-D3/SDD/6-31g**/IEFPCM level of theory predicted an exergonic process and lower barrier (< 21 kcal/mol) for the reductive elimination of Pd(C6F5)2 complexes bearing arene ligands, compared to stronger coordinating solvents (acetonitrile, THF, SMe2, and PMe3), which have high barriers ( > 33.7 kcal/mol). Reductive elimination from [Pd(ηn-Ar)(C6F5)2] complexes have low barriers due to: (i) ring slippage of the arene ligand as a hapticity change from η6 in the reactant to ηn (n ≤ 3) in the transition state and the product, which led to less σ-repulsion; and (ii) more favorable π-back-bonding from Pd(ArF)2 to the arene fragment in the transition state. Chapter 4 In this chapter, the efficient Pd-catalyzed C–Cl borylation of aryl chlorides containing two ortho-fluorines is presented. The reactions are conducted under base-free conditions to prevent the decomposition of the di-ortho-fluorinated aryl boronates, which are unstable in the presence of base. A combination of Pd(dba)2 (dba = dibenzylideneacetone) with SPhos (2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl) as a ligand is efficient to catalyze the C–Cl borylation of aryl chlorides containing two ortho-fluorine substituents without base, and the products were isolated in excellent yields. The substrate scope can be expanded to aryl chloride containing one or no ortho-fluorines and the borylated products were isolated in good to very good yield. This method provides a nice alternative to traditional methodologies using lithium or Grignard reagents. N2 - Fluorierte Verbindungen sind insbesondere in der Pharmazie wichtige Bausteine, da ein Drittel der wirksamen Medikamente Fluorsubstituenten beinhalten. Fluorierte Biaryle haben auch zahlreiche Anwendungen in Bereichen wie der Materialwissenschaft, der Landwirtschaft, dem Design molekularer Festkörperstrukturen, der supramolekularen Chemie etc. Daher ist die Entwicklung neuer synthetischer Wege zu fluorierten chemischen Verbindungen sehr gefragt. Eine der vielversprechenden Methoden ist die Borylierung geeigneter Vorstufen zur Erzeugung fluorierter Arylboronate, die als vielseitige Bausteine für die organische Synthese dienen können. ... KW - Chemistry KW - Homogeneous Catalysis KW - borylation KW - boronates KW - fluorine KW - C-C coupling KW - Homogene Katalyse KW - Borylierung KW - Fluorierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217579 ER - TY - THES A1 - Gärtner, Annalena T1 - Synthese und Reaktivität niedervalenter Borverbindungen T1 - Synthesis and reactivity of low-valent boron compounds N2 - Die Dissertation befasst sich mit der Synthese und Reaktivität verschiedener niedervalenter Borverbindungen. In dem ersten Kapitel der Arbeit wurde das CAAC-stabilisierte Cyano(hydro)borylanion auf seine Bor- sowie Stickstoff-zentrierte Nucleophilie hin untersucht. Das ambidente Reaktionsverhalten der Verbindung konnte gegenüber verschiedenen Kohlenstoffelektrophilen sowie Monohalogenboranen nachgewiesen werden. Der zweite Teil der Arbeit befasst sich mit der Aktivierung, Fixierung und Verkettung von Distickstoff durch Borylene. Es gelang den Mechanismus experimentell sowie quantenchemisch aufzuklären. Das Folgeprodukt der Protonierung, welches ein Bisborylhydrazindiradikal darstellt, wurde weitergehend auf seine Reaktivität als Reduktionsmittel untersucht und konnte selektiv einfach sowie zweifach oxidiert werden. Das dritte Kapitel beschreibt die Synthese eines neuartigen, vollständig ungesättigten 1,2-Diboretdiradikals, welches durch die schrittweise Reduktion des 2,3-[(CAAC)BBr2]2-Naphthalins erhalten wurde. Anfängliche Reaktivitätsstudien zu dem 1,2-Diboretdiradikal zeigen zudem, dass die Verbindung als Bor-Bor-Mehrfachbindung gegenüber einem Azid reagiert, jedoch durch die Umsetzung mit Kohlenstoffmonoxid auch zu einem Bisborylen gespalten werden kann. N2 - The dissertation deals with the synthesis and reactivity of various low-valent boron compounds. The first chapter of the thesis discusses the boron- and nitrogen-centred nucleophilicity of the CAAC-stabilised cyano(hydro)borylanion. The ambivalent reaction behaviour of the compound was demonstrated by reacting it with various carbon electrophiles as well as monohalogen boranes. The second part of the work deals with the activation, fixation and reductive coupling of dinitrogen by borylenes. The mechanism was elucidated experimentally and quantum-chemically. The protonation product, a bisboryl hydrazine diradical, was further investigated for its reactivity as a reducing agent and could be selectively oxidized. The third chapter describes the synthesis of a novel, fully unsaturated 1,2-diborete biradicaloid obtained by the stepwise reduction of 2,3-[(CAAC)BBr2]2 naphthalene. Initial reactivity studies on the 1,2-diborete biradicaloid also show that the compound reacts either as a boron-boron multiple bond towards azides, but can also be cleaved to a bisborylene by reaction with carbon monoxide. KW - Borylene KW - Stickstofffixierung KW - Borylierung KW - Borylanion KW - Diboret KW - Borylen KW - Niedervalentes Bor KW - Niedervalente Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-292771 ER - TY - THES A1 - Häfner, Alena T1 - Reaktivität eines \(ortho\)-phenylenverbrückten Diborans und Darstellung von gespannten C\(_2\)B\(_2\)-Ringsystemen T1 - Reactivity of an \(ortho\)-phenylenbridged diborane and synthesis of strained C\(_2\)B\(_2\) ring systems N2 - Die Dissertation befasst sich mit der Reaktivität von 1,2-Bis(dichlorboryl)benzol. Im ersten Kapitel wird auf die Problematik bei dessen Synthese eingegangen. Der zweite Teil der Arbeit befasst sich mit der Bildung von entsprechenden Boran-Addukten mit verschiedenen Lewis-Basen. Das dritte Kapitel beschreibt die Synthese eines neuartigen, vollständig ungesättigten 1,2-Diboretdiradikals, welches durch die schrittweise Reduktion des 1,2-[(CAAC)BCl2]2-Benzols erhalten wurde. Darüber hinaus konnte bei dieser schrittweisen Reduktion ebenfalls das einfache Borylradikal, das nicht-cyclische Diradikal und das dianionische gespannte C2B2-Ringsystem erhalten werden. Anfängliche Reaktivitätsstudien zum 1,2-Diboretdiradikal zeigen zudem, dass die B-B-Bindung durch Umsetzung mit Kohlenstoffmonoxid gespalten und so ein Bisborylen dargestellt werden kann. Im vierten Kapitel konnte das 1,2-Bis(dichlorboryl)benzol durch Transmetallierungsreaktionen zu verschiedenen, sich in ihren Eigenschaften stark unterscheidenden, Verbindungen umgesetzt werden. So konnte das fluoreszierende ortho-phenylenverbrückte Bis-9-Borafluoren erhalten werden, aus welchem durch Wärmezufuhr das ebenfalls fluoreszierendes diboraanthracenartige Umlagerungsprodukt gewonnen werden konnte. Beide Verbindungen wurden auf ihre photophysikalischen und elektrochemischen Eigenschaften untersucht. Weiterhin konnten polycyclische Boracyclen mit C10B2-Gerüst erhalten werden, bei welchen instantan die selektive Bildung von zwei chiralen Zentren über eine Vielzahl an B-C-Bindungsbrüchen und -knüpfungen beobachtet wurde. Zuletzt konnte ein thermisch empfindliches, potentiell explosives Azid-verbrücktes Azidoboran dargestellt werden, bei welchem eine Staudinger-artige Reaktivität beobachtet werden konnte. N2 - The dissertation deals with the reactivity of 1,2-bis(dichloroboryl)benzene. The first chapter deals with the problems involved in its synthesis. The second part of the thesis deals with the formation of corresponding borane adducts with various Lewis bases. The third chapter describes the synthesis of a novel, fully unsaturated 1,2-diboretdiradical, which was obtained by the stepwise reduction of 1,2-[(CAAC)BCl2]2-benzene. In addition, the simple boryl radical, the non-cyclic diradical and the dianionic strained C2B2 ring system were also obtained in this stepwise reduction. Initial reactivity studies on the 1,2-diboretdiradical also show that the B-B bond can be cleaved by reaction with carbon monoxide to give a bisborylene. In the fourth chapter, 1,2-bis(dichloroboryl)benzene was reacted by transmetallation reactions to from various compounds with very different properties. Thus, the fluorescent ortho-phenylene-bridged bis-9-borafluorene was obtained, from which the likewise fluorescent diboraanthracene-like rearrangement product could be obtained by applying heat. Both compounds were investigated for their photophysical and electrochemical properties. Furthermore, polycyclic boracycles with a C10B2 scaffold were obtained, in which the selective formation of two chiral centers via a multitude of B-C bond breaks and linkages was observed instantaneously. Finally, a thermally sensitive, potentially explosive azide-bridged azidoborane was obtained for which Staudinger-like reactivity was observed. KW - Biradikal KW - Borylierung KW - Diboret KW - Borylradikale KW - CnB2-Heterocyclen KW - Biradikale Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348020 ER - TY - THES A1 - Kuntze-Fechner, Maximilian Wolfgang T1 - Reaktivität NHC-stabilisierter Nickel(0)-Komplexe in der C–F-Bindungsaktivierung von Polyfluoraromaten T1 - Reactivity of NHC-stabilized nickel(0) complexes in the C–F bond activation of polyfluoroarenes N2 - Die vorliegende Arbeit befasst sich mit der C–F Bindungsaktivierung von teil und perfluorierten Aromaten an NHC stabilisierten Nickel(0) Komplexen, sowohl in stöchiometrischen als auch in katalytischen Reaktionen. Der Fokus dieser Arbeit lag auf der Aufklärung der Mechanismen der C–F Bindungsaktivierungsschritte von teil und perfluorierten Aromaten an ein und zweifach NHC stabilisierten Nickel(0) Komplexen, auf dem Einsatz dieser Komplexe in katalytischen Kreuzkupplungs- und Borylierungsreaktionen sowie in der Aufklärung der Mechanismen solcher katalytischen Prozesse. Die im Rahmen dieser Arbeit erzielten Ergebnisse belegen wesentliche Unterschiede im Reaktionsverhalten von Nickel Komplexen in der C–F Bindungsaktivierung: Die Reaktionsmechanismen der mit zwei sterisch unterschiedlich anspruchsvollen NHC Liganden stabilisierten Nickel(0) Komplexe [Ni(iPr2Im)2] (1a) und [Ni(Mes2Im)2] (5) weisen deutliche Unterschiede auf. So erfolgt die Insertion von [Ni(iPr2Im)2] (1a), dem Komplex mit dem weniger anspruchsvolleren Carbenliganden iPr2Im, in die C–F-Bindung von C6F6 nach einem konzertierten und/oder NHC assistierten Reaktionsmechanismus, wohingegen der Nickel(0) Komplex 5 nach einem radikalischen und/oder NHC assistierten Reaktionsmechanismus insertiert. Die Experimente am einfach NHC stabilisierten Nickel(0) Komplex [Ni(Dipp2Im)(η6 C7H8)] 6 belegen, dass die C–F Bindungsaktivierung zunächst zu reaktiven mononuklearen Komplexen [Ni(Dipp2Im)(F)(ArF)] führt, die jedoch allmählich zu dinuklearen, Fluorido verbrückten Nickel(II) Komplexen dimerisieren, die katalytisch nicht aktiv sind. Erst die Aufspaltung dieser Dimere in mononukleare Komplexe mit terminalen Fluoridoliganden führt zur katalytischen Aktivität. Dabei hat sich gezeigt, dass 5 und 6 vergleichbar gute Katalysatoren in der Nickel vermittelten C–F Borylierung sind und der kritische Schritt der Katalyse die Bereitstellung eines katalytisch aktiven, dreifach koordinierten Nickel Komplexes der Form [Ni(NHC)(F)(ArF)] ist. N2 - The present work concerns the stoichiometric and catalytic C–F bond activation of partially and perfluorinated arenes with NHC nickel(0) complexes. A particular emphasis was placed on mechanistic investigations concerning the C–F bond activation step of these processes. Furthermore, the application of these complexes in catalytic cross-coupling and borylation reactions, was investigated, including mechanistic studies. The results obtained in this thesis demonstrate significant differences in the reaction behavior of nickel complexes in C–F bond activation: The reaction mechanism of the nickel(0) complexes [Ni(iPr2Im)2] (1a) and [Ni(Mes2Im)2] (5) stabilized by two NHC ligands with varying steric demands show clear differences. [Ni(iPr2Im)2] (1a), the complex with the less demanding carbene ligand, iPr2Im, inserts into the C–F bond of C6F6 by a concerted and/or NHC assisted reaction mechanism, whereas the nickel(0) complex 5 inserts according to a radical and/or NHC assisted reaction mechanism. The studies on the single NHC stabilized nickel(0) complex Ni(Dipp2Im)(η6 C7H8)] (6) show that C–F bond activation initially leads to reactive, mononuclear complexes of the type [Ni(Dipp2Im)(F)(ArF)], which dimerize to dinuclear, fluorido bridged nickel(II) complexes that are not catalytically active. Only cleavage of these dimers into mononuclear complexes with terminal fluorido ligands leads to catalytic activity. It was shown that 5 and 6 are comparatively good catalysts in the nickel mediated C–F bond borylation and the critical step in the catalysis is the provision of a catalytically active, three coordinated nickel complex of the type [Ni(NHC)(F)(ArF)]. KW - Borylierung KW - Aktivierung KW - Katalyse KW - NHC KW - C-F-Bindungsaktivierung KW - C-F Borylierung KW - Nickel-Komplexe KW - C-F bond activation KW - nickel KW - C-F borylation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211597 ER - TY - THES A1 - Liu, Xiaocui T1 - Catalytic Triboration and Diboration of Terminal Alkynes T1 - Katalytische dreifach und zweifach Borylierung von terminalen Alkinen N2 - Chapter two reports the catalytic triboration of terminal alkynes with B2pin2 using readily available Cu(OAc)2 and PnBu3. Various 1,1,2-triborylalkenes, a class of compounds which have been demonstrated to be potential Matrix Metalloproteinase-2 (MMP-2) inhibitors, are obtained directly in moderate to good yields. The process features mild reaction conditions, broad substrate scope, and good functional group tolerance were observed. This Cu-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products is demonstrated by further transformation of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohalodiborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare. A convenient and efficient one step synthesis of 1,1,1-triborylalkanes was achieved via sequential dehydrogenative borylation and double hydroboration of terminal alkynes with HBpin (HBpin = pinacolborane) catalyzed by inexpensive and readily available Cu(OAc)2. This protocol proceeded under mild conditions, furnishing 1,1,1-tris(boronates) with wide substrate scope, excellent selectivity and good functional group tolerance, and is applicable to gram-scale synthesis without loss of yield. The 1,1,1-triborylalkanes can be used in the preparation of α-vinylboronates and borylated cyclic compounds, which are valuable but previously rare compounds. Different alkyl groups can be introduced stepwise via base-mediated deborylative alkylation to produce racemic tertiary alkyl boronates, which can be readily transformed into useful tertiary alcohols. Chapter 4 reported a NaOtBu-catalyzed mixed 1,1-diboration of terminal alkynes with an unsymmetrical diboron reagent BpinBdan. This Brønsted base-catalyzed reaction proceeds in a regio- and stereoselective fashion affording 1,1-diborylalkenes with two different boryl moieties in moderate to high yields, and is applicable to gram-scale synthesis without loss of yield or selectivity. Hydrogen bonding between the Bdan group and tBuOH is proposed to be responsible for the observed stereoselectivity. The mixed 1,1-diborylalkenes can be utilized in stereoselective Suzuki-Miyaura cross-coupling reactions. N2 - Multiboryl-Verbindungen sind von entscheidender Bedeutung für die moderne Chemie in Form von bioaktiven Wirkstoffen und Synthesebausteinen. Der Einsatz von Monoboronaten und Bisboronaten in der organischen Synthese ist von steigendem Interesse. Triboronate hingegeben werden eher selten verwendet, sind aber von potentiellem Interesse. Effiziente Methoden zur Darstellung von 1,1,2-Triborylalkenen und 1,1,1-Triborylalkanen sind in Kapitel 2 und Kapitel 3 gezeigt. Außerdem stellen gemischte 1,1-Diborylalkene einen wichtigen Synthesebaustein in der stereoselektiven Suzuki-Miyaura-Kreuzkupplung dar. Eine einfache und effiziente Methode für die Synthese von gemischten 1,1-Diborylalkenen durch Diborierung terminaler Alkine mit BpinBdan ist in Kapitel 4 vorgestellt. Kapitel 2 zeigt die katalytische Triborierung von terminalen Alkinen mit B2pin2 in Anwesenheit von einfach zugänglichem Cu(OAc)2 and PnBu3 (Schema S-1). Verschiedene 1,1,2-Tris(boryl)alkene konnten in mäßigen bis guten Ausbeuten erhalten werden (22 Beispiele, bis zu 74% Ausbeute). Die Syntheseroute zeichnet sich durch milde Reaktionsbedingungen, ein breites Substratspektrum und eine gute Toleranz gegenüber funktionellen Gruppen aus. Diese Cu-katalysierte Reaktion kann außerdem im Gramm- Maßstab durchgeführt werden, wobei das entsprechende 1,1,2-Triborylalken in mäßigen Ausbeuten (48% Ausbeute) erhalten wurde. Um Einblick in den Reaktionsmechanismus zu erhalten, wurden Kontrollexperimente durchgeführt. Das Kontrollexperiment und die Verfolgung des Reaktionsverlaufs mittels in situ 19F NMR Spektroskopie deuten darauf hin, dass es sich bei dem Alkinylboronat (2-4) um ein Zwischenprodukt im Katalysezyklus handelt (Schema S-2). Der mögliche Mechanismus dieser Kupfer-katalysierten Triborierung von terminalen Alkinen umfasst zwei Prozesse: Die dehydrierende Borierung terminaler Alkine and die Diborierung von Alkinylboronaten. Der synthetische Nutzen dieser Verbindungen ist anhand weiterer Transformationen der C-B-Bindungen zur Darstellung geminaler Dihalogenborylalkene (2-7, 2-9 und 2-11), Monohalogenborylalkene (2-8 und 2-10) und trans-Diaryldiborylalkene (2-6) demonstriert (Schema S-3), welche bedeutende Synthesebausteine darstellen und bislang nur schwer zugänglich waren. In Kapitel 3 wurde eine praktische und effiziente Eintopf-Synthese zur Darstellung von 1,1,1-Triborylalkanen, durch Triborierung von terminalen Alkinen mit HBpin in Anwesenheit von 10 mol-% Cu(OAc)2, demonstriert (Schema S-4). Ein großes Spektrum an Aryl- und Alkylalkinen konnte in mäßigen bis hohen Ausbeuten (38 Beispiele, bis zu 93% Ausbeute) in die entsprechenden 1,1,1-Triborylalkane überführt werden. Die Reaktion lässt sich außerdem erfolgreich im Gramm-Maßstab durchführen (87% Ausbeute). Der Katalysezyklus umfasst höchstwahrscheinlich eine Cu-katalysierte sequenzielle, dehydrierende Borierung und zweifache Hydroborierung von terminalen Alkinen. Die Rolle des Alkinylboronats (3-4a), welches aus der dehydrierenden Borierung als Schlüsselintermediat hervorgeht, wurde mithilfe des in Schema S-5 (eq 1) gezeigten Kontrollexperiments demonstriert. Desweiteren zeigte die in situ Verfolgung der Reaktion mit 2 Äquivalenten HBpin mittels GCMS die Bildung von Zwischenprodukt 3-5a im Anfangsstadium der Reaktion (6 h). Bei Zugabe von 2 weiteren Äquivalenten HBpin zur Reaktion, konnte 3-2a in 85% Ausbeute, durch Hydroborierung von Zwischenprodukt 3-5a nach 18 h, erhalten werden (Schema S-5, eq 2). Dies deutet darauf hin, dass es sich bei dem 1,1-Diborylalken (3-5a) um ein Zwischenprodukt im Katalysezyklus handelt. Wir konnten zeigen, dass 1,1,1-Triborylalkane bedeutende Syntheseintermediate zur Ausbildung von carbozyklischen Organoboronaten und α-Vinylboronaten (Schema S-6, eq 1) repräsentieren, welche mit den bislang bekannten Methoden nur schwer zugänglich waren. Eine stufenweise, deborylierende Funktionalisierung von 1,1,1-Triborylalkanen ergab einen unsymmetrischen tertiären Alkohol (Schema S-6, eq 2). In Kapitel 4 ist eine einfache und atomökonomische Route für die gemischte Borierung von terminalen Alkinen mit dem unsymmetrischen Diboran BpinBdan demonstriert, katalysiert durch kostengünstiges und einfach zugängliches NaOtBu (Schema S-7). Verschiedene 1,1-Diborylacrylate und 1,1-Diborylacrylamide mit zwei unterschiedlichen Bor-Substituenten, welche bislang schwer darzustellen waren, konnten in mäßigen bis hohen Ausbeuten und mit hohen Stereoselektivitäten erhalten werden (14 Beispiele). Die beobachtete Stereoselektivität ist vermutlich auf Wasserstoffbrückenbindungen zwischen Bdan und tBuOH zurückzuführen. Die Produkte fanden weiter Anwendung in der stereoselektiven Synthese von trisubstituierten Olefinen. Suzuki-Miyaura Kreuzkupplungen wurden ausschließlich an der Bpin-Position beobachtet (Schema S-8). Zusammenfassend, konnte eine Vielzahl an Borierungen zur Darstellung von 1,1,2-Triborylalkenen, 1,1,1-Triborylalkanen und gemischten 1,1-Diborylalkenen durch Cu- oder Basen-katalysierte Borierung von terminalen Alkinen vorgestellt werden, welche einfach zugängliche Startmaterialien darstellen. Der synthetische Nutzen von Di- oder Triboronaten konnte anhand sehr präziser Synthesen von gewissen interessanten Zielverbindungen verdeutlicht werden. KW - Boration KW - Cross-coupling KW - Catalysis KW - Borylierung KW - Alkine Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192537 ER - TY - JOUR A1 - Liu, Xiaocui A1 - Ming, Wenbo A1 - Friedrich, Alexandra A1 - Marder, Todd B. T1 - Kupfer‐katalysierte Triborierung terminaler Alkine mit B2pin2: Effiziente Synthese von 1,1,2‐Triborylalkenen JF - Angewandte Chemie N2 - Wir berichten über die katalytische Triborierung terminaler Alkine mit B\(_2\)pin\(_2\) (Bis‐(pinakolato)‐dibor) unter Verwendung von einfach zugänglichem Cu(OAc)\(_2\) und P\(^n\)Bu\(_3\). Verschiedene 1,1,2‐Triborylalkene, eine Verbindungsklasse mit potentieller Funktion als Matrix‐Metallo‐Proteinase(MMP‐2)‐Inhibitor, werden direkt in mäßigen bis guten Ausbeuten erhalten. Das Verfahren zeichnet sich durch milde Reaktionsbedingungen, ein breites Substratspektrum und eine gute Verträglichkeit gegenüber funktionellen Gruppen aus. Diese Cu‐katalysierte Reaktion kann im Gramm‐Maßstab durchgeführt werden und liefert die entsprechenden 1,1,2‐Triborylalkene in mäßigen Ausbeuten. Die Verwendung solcher Verbindungen wird anhand weiterer Transformationen der C−B‐Bindungen zur Darstellung eines geminalen Dihalogenborylalkens (F, Cl, Br), eines Monohalogendiborylalkens (Cl, Br) und eines trans‐Diaryldiborylalkens demonstriert, welche bedeutende Synthesebausteine darstellen und bisher nur schwer zugänglich waren. KW - Boronatester KW - Borylierung KW - Diborierung KW - Halogenierung KW - Kreuzkupplungen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219699 VL - 132 IS - 1 ER - TY - THES A1 - Mao, Lujia T1 - Transition Metal-Catalyzed Construction of Benzyl/Allyl sp\(^3\) and Vinyl/Allenyl sp\(^2\) C-B Bonds T1 - Übergangsmetall katalysierte Konstruktion von Benzyl/Allyl sp\(^3\) und Vinyl/Allenyl sp\(^2\) C-B Bindungen N2 - Organoboron compounds, such as benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates, have been synthesized via metal-catalyzed borylations of sp3 C-O and C-H bonds. Thus, Cu-catalyzed borylations of alcohols and their derivatives provide benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates via nucleophilic substitution. The employment of Ti(OiPr)4 turns the OH moiety into a good leaving group (‘OTi’). The products of Pd-catalyzed oxidative borylations of allylic C-H bonds of alkenes were isolated and purified, and their application in the one-pot synthesis of stereodefined homoallyl alcohols was also investigated. Chapter 2 presents a copper-catalyzed synthesis of benzyl-, allyl-, and allenyl-boronates from benzylic, allylic, and propargylic alcohols, respectively, employing a commercially available catalyst precursor, [Cu(CH3CN)4]2+[BF4-]2, and Xantphos as the ligand. The borylation of benzylic alcohols was carried out at 100 oC with 5-10 mol % [Cu(CH3CN)4]2+[BF4-]2, which afforded benzylic boronates in 32%-95% yields. With 10 mol % [Cu(CH3CN)4]2+[BF4-]2, allylic boronates were provided in 53%-89% yields from the borylation of allylic alcohols at 60 or 100 oC. Secondary allylboronates were prepared in 72%-84% yields from the borylation of primary allylic alcohols, which also suggests that a nucleophilic substitution pathway is involved in this reaction. Allenylboronates were also synthesized in 72%-89% yields from the borylation of propargylic alcohols at 40 or 60 oC. This methodology can be extended to borylation of benzylic and allylic acetates. This protocol exhibits broad reaction scope (40 examples) and high efficiency (up to 95% yield) under mild conditions, including the preparation of secondary allylic boronates. Preliminary mechanistic studies suggest that nucleophilic substitution is involved in this reaction. Chapter 3 reports an efficient methodology for the synthesis of vinyl-, allyl-, and (E)-2-boryl allylboronates from propargylic alcohols via copper-catalyzed borylation reactions under mild conditions. In the presence of a commercially available catalyst precursor (Cu(OAc)2 or Cu(acac)2) and ligand (Xantphos), the reaction affords the desired products in up to 92% yield with a broad substrate scope (43 examples). Vinylboronates were synthesized in 50%-83% yields via Cu-catalyzed hydroboration of mono-substituted propargylic alcohols. With 1,1-disubstituted propargylic alcohols as the starting materials and Cu(OAc)2 as the catalyst precursor, a variety of allylboronates were synthesized in 44%-83% yields. The (E)-2-boryl allylboronates were synthesized in 54%-92% yields via the Cu-catalyzed diboration of propargylic alcohols. The stereoselectivity is different from the Pd(dba)2-catalyzed diboration of allenes that provided (Z)-2-boryl allylboronates predominantly. The isolation of an allenyl boronate as the reaction intermediate suggests that an SN2’-type reaction, followed by borylcupration, is involved in the mechanism of the diboration of propargylic alcohols. In chapter 4, a Pd-catalyzed allylic C-H borylation of alkenes is reported. The transformation exhibits high regioselectivity with a variety of linear alkenes, employing a Pd-pincer complex as the catalyst precursor, and the allylic boronate products were isolated and purified. This protocol can also be extended to one-pot carbonyl allylation reactions to provide homoallyl alcohols efficiently. An interesting mechanistic feature is that the reaction proceeds via a Pd(II)/Pd(IV) catalytic cycle. Formation of the Pd(IV) intermediate occurs by a unique combination of an NCNpincer complex and application of F-TEDA-BF4 as the oxidant. An important novelty of the present C-H borylation reaction is that all allyl-Bpin products can be isolated with usually high yields. This is probably a consequence of the application of the NCN-pincer complex as catalyst, which selectively catalyzes C-B bond formation avoiding subsequent C-B bond cleavage based side-reactions N2 - Bisher ist es uns gelungen, effiziente Methoden zur Erzeugung von Benzyl/Allyl-sp3- und Vinyl/Allenyl-sp2-C-B-Bindungen mit Hilfe von Kupfer- oder Palladium-katalysierter Borylierung der entsprechenden Alkohole oder Alkene zu entwickeln, bei welchen es sich um leicht zugängliche Substrate handelt. Kapitel 2 In Kapitel 2 wird das erste Beispiel einer Cu-katalysierten, direkten Borylierung von Alkoholen (40 Beispiele) vorgestellt. Dies stellt eine effiziente Methode dar, um ein breites Spektrum an Benzyl-, Allyl- und Allenyl-Boronaten unter milden Bedingungen herzustellen. Die Verwendung von Ti(OiPr)4 wandelt den OH-Rest in eine hervorragende Abgangsgruppe (‚OTi‘) um, was eine wichtige Rolle bei der Borylierung von Alkoholen spielt. Obwohl ein Cu(II)-Komplex als Vorstufe für den Katalysator eingesetzt wurde, wird davon ausgegangen, dass der aktive Katalysator für die Borylierungsreaktion eine Cu(I)-Spezies ist. Benzylboronate wurden mit Hilfe einer Cu-katalysierten Borylierung von Benzylalkoholen (Gl. Z-1) dargestellt, wobei sowohl der Kupferkomplex [Cu(CH3CN)4]2+[BF4-]2 als auch der Xantphos-Ligand kommerziell erhältlich sind. Für die Borylierung von Benzylalkoholen wurde eine Katalysatorladung von 5 mol% des Kupferkatalysators verwendet, was auf eine hohe Effizienz dieser Methode schließen lässt. Alle Benzylboronate wurden in moderaten bis hohen Ausbeuten (bis zu 95%) isoliert. Diese Vorgehensweise lässt sich ebenso auf die Borylierung von Benzylacetaten anwenden, wobei ein Benzylboronat mit 54% Ausbeute erhalten werden kann. Dies lässt darauf schließen, dass es sich um eine allgemein anwendbare Methode handelt. Ferner wurden Allylboronate mit Hilfe einer vergleichbaren Route wie die Benzylboronate dargestellt (Gl. Z-2), wobei die Temperatur auf 60 °C abgesenkt werden kann. Bei der Borylierung von Allylalkoholen wurden ausgehend von primären Allylalkoholen sekundäre Allylboronate erhalten. Diese Reaktion unterscheidet sich daher von früheren Pd-katalysierten Borylierungen von Zusammenfassung Allylalkoholen, welche ausschließlich zu linearen Allylboronaten aufgrund der Bildung von (3- Allyl)Pd-Intermediaten führten. Anhand dieses Ergebnisses wird angenommen, dass eine nukleophile Substitution Teil des entsprechenden Mechanismus ist. Weiterhin weist diese Reaktion die Möglichkeit auf, chirale Allylboronate ausgehend von verschiedenen primären Allylalkoholen zu erhalten. Diese finden signifikante Anwendung bei der asymmetrischen Synthese. Unseres Wissens nach stellt diese Methode außerdem das erste Beispiel einer katalytischen Synthese von sekundären Allylboronaten dar, die direkt von Alkoholen ausgeht. Die Borylierung konnte ebenfalls mit sekundären und tertiären Allylalkoholen durchgeführt werden, wobei die entsprechenden Allylboronate in guten Ausbeuten erhalten wurden. Diese Cu-katalysierte Borylierungsreaktion kann außerdem Anwendung in der Borylierung von Propargylalkoholen finden (Gl. Z-3), wobei die Darstellung von Allenylboronaten in guten Ausbeuten erreicht wird. Hierbei kann die Reaktionstemperatur weiter auf 40 °C abgesenkt werden. Des Weiteren weist die Regioselektivität der Borylierung von Propargylakoholen darauf hin, dass die Reaktion über eine nukleophile Substitution verläuft. Die in Kapitel 2 vorgestellten Ergebnisse lassen darauf schließen, dass die Cu-katalysierte Borylierung von Akoholen eine allgemein anwendbare Methode zur Synthese von Benzyl-, Allylund Allenylboronaten darstellt. Kapitel 3 In Kapitel 3 wird eine Methode zur Synthese von Vinyl-, Allyl- und (E)-2-Boryl-Allyl-Boronaten mit Hilfe von Cu-katalysierter Borylierung von Propargylalkoholen (43 Beispiele) vorgestellt. Hierzu wurden kommerziell erhältliche Kupferkatalysatoren wie Cu(acac)2 und Cu(OAc)2 eingesetzt. In dieser Vorschrift wird erneut Ti(OiPr)4 verwendet, um durch die Reaktion mit Alkoholen (OH) in eine bessere Abgangsgruppe (OTi) zu erhalten. Zugang zu den (E)-2-Boryl-Allylboronaten wurde mit Hilfe von Cu-katalysierter Diborylierung von Propargylalkoholen (Gl. Z-4) ermöglicht. Die Reaktion kann bei 60 oder 80 °C durchgeführt werden. Die Regioselektivität dieser Cu-katalysierten Diborylierungsreaktion unterscheidet sich von der Pd2(dba)3-katalysierten Diborylierung von Allenen, bei der 2-Boryl-Allyl-Boronate mit C=C Doppelbindungen an der terminalen Position erhalten werden. Die Stereoselektivität weist ebenfalls einen Unterschied zur Pd(dba)2-katalysierten Diborylierung von Allenen auf. Bei dieser werden vorranging (Z)-2-Boryl-Allyl-Boronate mit C=C-Doppelbindungen an der internen Position erzeugt. Dies offenbart eine einzigartige Eigenschaft unserer Cu-katalysierten Diborylierung von Propargylalkoholen, welche die Nützlichkeit von Alkoholen in der Entwicklung der synthetischen Methode erweitert. Die Isolierung eines Allenylboronates als Zwischenprodukt während der Reaktion lässt vermuten, dass der Mechanismus der Diborylierung von Propargylalkoholen gemäß einer SN2‘-Reaktion verläuft, auf die eine Borylcuprierung folgt. Die Borylierung von 1,1-disubstituierten Propargylalkoholen, bei der Cu(OAc)2 als Vorstufe des Katalysators eingesetzt wird, führt zur Bildung von (Z)-Allylboronaten als Hauptprodukt (Gl. Z-5). Die Regio- und Stereoselektivität dieser Reaktion und der Cu-katalysierten Borylcuprierung von Allenylsilanen stimmen überein, wobei ein Unterschied zur Pd-katalysierten Borylierung von Allylalkoholen besteht, bei der vorrangig (E)-Allylboronate entstehen. Es liegt nahe, dass die Cukatalysierte Borylierung von 1,1-disubstituierten Propargylalkoholen eine alternative Route zur Herstellung von (Z)-Allylboronaten darstellt, da die Startmaterialien entweder kommerziell erhältlich oder einfach herzustellen sind. Vinylboronate werden ebenfalls mit Hilfe der Cu-katalysierten Borylierung von monosubstituierten Propargylalkoholen (Gl. Z-6) dargestellt. Die Regioselektivität hierbei stimmt mit der der Cu-katalysierten Borylcuprierung von Alkinen überein. Verglichen mit der Borylcuprierung von Allenen bietet die Borylierung von mono-substituierten Propargylalkoholen einen direkteren Zugang zur Darstellung von Vinylboronaten, da Allene in der Regel ausgehend von Propargylalkoholen dargestellt werden. Alle in Kapitel 3 diskutierten Ergebnisse weisen darauf hin, dass die Cu-katalysierte Borylierung von Propargylalkoholen eine einzigartige Methode zur Synthese von Vinyl-, Allyl- und (E)-2-Boryl- Allylboronaten bietetund eine allgemein anwendbare Vorschrift zur Herstellung von Organobor- Verbindungen mit einfach zugänglichen Startmaterialien darstellt. Die Regio- und Stereoselektivität unterscheidet sich außerdem von den bereits bekannten Methoden. Obwohl Cu(II)-Vorstufen der Katalysatoren eingesetzt werden, handelt es sich bei der katalytisch aktiven Spezies vermutlich um eine Cu(I)-Verbindung, da die Borylierungsreaktionen unter reduktiven Bedingungen durchgeführt werden. Kapitel 4 In Kapitel 4 wurde eine Pd-katalysierte oxidative Borylierung der C-H Bindungen von Alkenen (Gl. Z-7) vorgestellt, bei der eine Vielzahl an linearen Allylboronaten in guten Ausbeuten erzeugt wurde (Gl. Z-7). Außerdem konnten alle Allylboronate isoliert und gereinigt werden, was eine einzigartige Eigenschaft dieser Methode darstellt. Ein interessanter mechanistischer Aspekt dieser Reaktion ist das Durchlaufen eines Pd(II)/Pd(IV)-Katalysezyklus. Die Bildung des Pd(IV)-Intermediates erfolgt durch eine einzigartige Kombination des NCN-Pincerkomplexes A als Katalysaror und F-TEDABF4 als Oxidationsreagenz. Eine wichtige Neuerung der vorgestellten C-H-Borylierungsreaktion ist, dass sämtliche Allyl-BPin-Produkte für gewöhnlich in hohen Ausbeuten isoliert werden können. Dies ist vermutlich eine Folge der Verwendung des Pincer-Komplexes A als Katalysator, welcher selektiv die C-B-Bindungsbildung katalysiert und anschließend, als Pd(IV)-Spezies, C-BBindungsspaltungen als Nebenreaktionen vermeidet. Außerdem kann unsere Vorschrift auf Eintopf-Reaktionen von Aldehyden mit Allylen angewendet werden, um Homoallylalkohole zu erhalten (Gl. Z-8). Zusammengefasst haben wir eine Vielzahl an Borylierungsreaktionen entwickelt, um Benzyl-, Allyl-, Allenyl-, Vinyl- und 2-Boryl-Allylboronate mit Hilfe von Cu- oder Pd-katalysierter Borylierung von Alkoholen und Alkenen, bei denen es sich um leicht zugängliche Startmaterialien handelt, darzustellen. Die Reinigung dieser reaktiven Organobor-Verbindungen weist darauf hin, dass unsere Methoden die Werkzeuge zur Untersuchung der Reaktivität dieser Verbindungen liefern könnten. Die Synthese von sekundären Allylboronaten und 2-Boryl-Allylboronaten beinhaltet außerdem die potenzielle Anwendung in der asymmetrischen Synthese zur Erzeugung wertvoller asymmetrischer Organobor-Verbindungen. KW - borylation KW - synthetic methodology KW - Übergangsmetall KW - Borylierung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154022 ER - TY - THES A1 - Merz, Julia T1 - C-H Borylation: A Route to Novel Pyrenes and Perylenes and the Investigation of their Excited States and Redox Properties T1 - C-H Borylierung: Eine Route zu neuen Pyrenen und Perylenen und die Untersuchung der angeregten Zustände und Redoxeigenschaften N2 - Pyrene is a polycyclic aromatic hydrocarbon (PAH) that has very interesting photophysical properties which make it suitable for a broad range of applications. The 2,7-positions of pyrene are situated on nodal planes in both the HOMO and LUMO. Hence, electrophilic reactions take place at the 1-, 3-, 6-, and 8-positions. The goal of this project was to develop novel pyrene derivatives substituted at the 2- and 2,7-positions, with very strong donors or/and acceptors, to achieve unprecedented properties and to provide a deeper understanding of how to control the excited states and redox properties. For that reason, a julolidine-type moiety was chosen as a very strong donor, giving D-π and D-π-D systems and, with Bmes2 as a very strong acceptor, D-π-A system. These compounds exhibit unusual photophysical properties such as emission in the green region of the electromagnetic spectrum in hexane, whereas all other previously reported pyrene derivatives substituted at the 2,7-positions show blue luminescence. Furthermore, spectroelectrochemical measurements suggest very strong coupling between the substituents at the 2,7-positions of pyrene in the D-π-D system. Theoretical studies show that these properties result from the very strong julolidine-type donor and Bmes2 acceptor coupling efficiently to the pyrene HOMO-1 and LUMO+1, respectively. Destabilization of the former and stabilization of the latter lead to an orbital shuffle between HOMO and HOMO 1, and LUMO and LUMO+1 of pyrene. Consequently, the S1 state changes its nature sufficiently enough to gain higher oscillator strength, and the photophysical and electrochemical properties are then greatly influenced by the substituents. In another project, further derivatives were synthesized with additional acceptor moieties at the K-region of pyrene. These target derivatives exhibit strong bathochromically shifted absorption maxima (519-658 nm), which is a result of the outstanding charge transfer character introduced into the D-π-D pyrene system through the additional acceptor moiety at the K-region. Moreover, emission in the red to NIR region with an emission maximum at 700 nm in CH2Cl2 is detected. The excited state lives unusual long for K-region substituted pyrenes; however, such a lifetime is rather typical for 2,7-substituted pyrene derivatives. The polycyclic aromatic hydrocarbon perylene, especially perylene diimide, has received considerable attention in recent years and has found use in numerous applications such as dyes, pigments and semiconductors. Nevertheless, it is of fundamental importance to understand how to modulate the electronic and photophysical properties of perylene depending on the specific desired application. Perylenes without carboxyimide groups at the peri positions are much less well studied due to the difficulties in functionalizing the perylene core directly. In particular, only ortho heteroatom substituted perylenes have not been reported thus far (exception: (Bpin)4-Per was already reported by Marder and co-workers). Thus, the effect of substituents on the ortho positions of the perylene core has not been investigated. Two perylene derivatives were synthesized that bear four strong diphenylamine donor or strong Bmes2 acceptor moieties at the ortho positions. These compounds represent the first examples of perylenes substituted only at the ortho positions with donors or acceptors. The investigations show that the photophysical and electronic properties of these derivatives are unique and different compared to the well-studied perylene diimides. Thus, up to four reversible reductions or oxidations are possible, which is unprecedented for monomeric perylenes. Furthermore, the photophysical properties of these two ortho-substituted derivatives are unusual compared to reported perylenes on many regards. Thus, large Stokes shifts are obtained, and the singlet excited state of these derivatives lives remarkably long with intrinsic lifetimes of up to 94 ns. In a cooperation with Dr. Gerard P. McGlacken at University College Cork in Ireland, different quinolones were borylated using an iridium catalyst system to study the electronic and steric effect of the substrates. It was possible to demonstrate that the Ir-catalyzed borylation with the dtbpy ligand allows the direct borylation of various 4-quinolones at the 6- and 7-positions. Thus, later stage functionalization is possible with this method and more highly functionalized quinolones are also compatible with this mild reaction conditions. N2 - Pyren ist ein polycyclischer aromatischer Kohlenwasserstoff (PAK) mit sehr interessanten photophysikalischen Eigenschaften, der sich daher für ein breites Anwendungsspektrum eignet. Die 2,7-Positionen von Pyren befinden sich sowohl im HOMO als auch im LUMO auf Knotenebenen. Daher finden elektrophile Reaktionen an den 1-, 3-, 6- und 8-Positionen statt. Das Ziel dieses Projekts war die Entwicklung neuer Pyrenderivate, die an den 2- und 2,7-Positionen substituiert sind und sehr starke Donoren oder / und Akzeptoren aufweisen, um beispiellose Eigenschaften zu erzielen und ein tiefgreifenderes Verständnis für die Steuerung der angeregten Zustände und Redoxzustände zu erhalten. Aus diesem Grund wurde die Julolidin-Einheit als sehr starker Donor gewählt um D-π und D-π-D -Systeme zu entwickeln und mit Bmes2 als sehr starker Akzeptor wurde ein D-π-A System entwickelt. Diese Verbindungen zeigen ungewöhnliche photophysikalische Eigenschaften wie die Emission im grünen Bereich des elektromagnetischen Spektrums in Hexan, während alle anderen zuvor beschriebenen Pyrenderivate, die an den 2,7-Positionen substituiert sind, blaue Lumineszenz zeigen. Darüber hinaus legen spektroelektrochemische Messungen eine unerwartet starke Kopplung zwischen den Substituenten an den 2,7-Positionen von Pyren im D-π-D-System nahe. Theoretische Studien zeigen, dass diese Eigenschaften aus der sehr starken Kopplung zwischen dem Julolidin-Donor und Bmes2-Akzeptor mit dem Pyren HOMO-1 bzw. LUMO + 1 resultieren. Die Destabilisierung des Ersteren und die Stabilisierung des Letzteren führen zu einem Orbital-Shuffle zwischen HOMO und HOMO-1 und LUMO und LUMO+1 von Pyren. Folglich ändert der S1-Zustand seinen Charakter ausreichend, um eine höhere Oszillatorstärke zu erzielen. Die photophysikalischen und elektrochemischen Eigenschaften werden damit stark von den Substituenten beeinflusst. In einem weiteren Projekt wurden weitere Derivate mit zusätzlichen Akzeptoreinheiten in der K-Region von Pyren synthetisiert. Alle Zielderivate weisen starke bathochrom verschobene Absorptionsmaxima (519-658 nm) auf, was auf den hervorragenden Ladungstransfercharakter zurückzuführen ist, der durch die zusätzliche Akzeptoreinheit in der K-Region in das D-π-D-Pyrensystem eingeführt wurde. Emission im Rot-NIR-Bereich mit einem Emissionsmaximum bei 700 nm in CH2Cl2 wurde sogar detektiert. Der angeregte Zustand ist ungewöhnlich langlebig für K-substituierte Pyrene, diese sind jedoch typisch für 2,7-substituierte Pyrenderivate. Der polycyclische aromatische Kohlenwasserstoff Perylen, insbesondere Perylendiimid, erlangte in den letzten Jahren beträchtliche Aufmerksamkeit und fand Verwendung in zahlreichen Anwendungen wie Farbstoffen, Pigmenten oder Halbleitern. Dennoch ist es von grundlegender Bedeutung zu verstehen, wie die elektronischen und photophysikalischen Eigenschaften von Perylen in Abhängigkeit von der spezifischen gewünschten Anwendung moduliert werden können. Perylene ohne Carboxyimidgruppen an den Peripositionen sind aufgrund der Schwierigkeiten bei der direkten Funktionalisierung des Perylenkerns bislang kaum untersucht worden. Ziel dieses Projektes war es den bisher unbekannten Einfluss von Substituenten auf die ortho-Positionen des Perylenkerns zu untersuchen. Es wurden zwei Perylenderivate synthetisiert, die an den ortho-Positionen vier starke Diphenylamin-Donor oder vier starke Bmes2-Akzeptor-Einheiten aufweisen. Diese Verbindungen stellen die ersten Beispiele für Perylene dar, die nur an den ortho-Positionen mit Donoren oder Akzeptoren substituiert sind. Die Untersuchungen zeigen, dass die photophysikalischen und elektronischen Eigenschaften dieser Derivate im Vergleich zu den gut untersuchten Perylendiimiden einzigartig sind. Somit sind bis zu vier reversible Reduktionen oder Oxidationen dieser Verbindungen möglich, was für monomere Perylene bisher beispiellos ist. Darüber hinaus sind die photophysikalischen Eigenschaften dieser beiden ortho-substituierten Derivate in vielerlei Hinsicht ungewöhnlich im Vergleich zu den bekannten Perylenen. Durch Substitution an den ortho-Positionen werden große Stokes-Verschiebungen erhalten und der Singulett-angeregte Zustand unserer Derivate ist mit intrinsischen Lebensdauern von bis zu 94 ns bemerkenswert lang. In Zusammenarbeit mit Dr. Gerard P. McGlacken vom University College Cork in Irland wurden verschiedene Quinolone mittels eines Iridium-Katalysatorsystems boryliert, um die elektronische und sterische Kontrolle der Substrate zu untersuchen. Es konnte gezeigt werden, dass die Ir-katalysierte Borylierung mit dem dtbpy-Liganden die direkte Borylierung verschiedener 4-Quinolone in 6- und 7-Position ermöglicht. Somit ist mit dieser Methode eine spätere Funktionalisierung möglich, und höher funktionalisierte Quinolone sind mit diesen milden Reaktionsbedingungen auch kompatibel. KW - Pyren KW - Perylen KW - Pyrene KW - Perylene KW - Polycyclic Aromatic Hydrocarbons KW - Fluorescene KW - PAK KW - Fluoreszenz KW - Borylierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-185226 ER - TY - THES A1 - Tian, Yaming T1 - Selective C-X and C-H Borylation by N-Heterocyclic Carbene Nickel(0) Complex T1 - Selektive C-X und C-H Borylierung mittels N-Heterozyklischer Carben Nickel(0) Komplexe N2 - Organoboron compounds are important building blocks in organic synthesis, materials science, and drug discovery. The development of practical and convenient ways to synthesize boronate esters attracted significant interest. Photoinduced borylations originated with stoichiometric reactions of arenes and alkanes with well-defined metal-boryl complexes. Now photoredox-initiated borylations, catalyzed either by transition-metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this chapter, we summarize research in the field of photocatalytic C-X borylation, especially emphasizing recent developments and trends, based on transition-metal catalysis, metal-free organocatalysis and direct photochemical activation. We focus on reaction mechanisms involving single electron transfer (SET), triplet energy transfer (TET), and other radical processes. We developed a highly selective photocatalytic C-F borylation method that employs a rhodium biphenyl complex as a triplet sensitizer and the nickel catalyst [Ni(IMes)2] (IMes = 1,3-dimesitylimidazolin-2-ylidene) for the C-F bond activation and defluoroborylation process. This tandem catalyst system operates with visible (400 nm) light and achieves borylation of a wide range of fluoroarenes with B2pin2 at room temperature in excellent yields and with high selectivity. Direct irradiation of the intermediary C-F bond oxidative addition product trans-[NiF(ArF)(IMes)2] leads to fast decomposition when B2pin2 is present. This destructive pathway can be bypassed by indirect excitation of the triplet states of the nickel(II) complex via the photoexcited rhodium biphenyl complex. Mechanistic studies suggest that the exceptionally long-lived triplet excited state of the Rh biphenyl complex used as the photosensitizer allows for efficient triplet energy transfer to trans-[NiF(ArF)(IMes)2], which leads to dissociation of one of the NHC ligands. This contrasts with the majority of current photocatalytic transformations, which employ transition metals as excited state single electron transfer agents. We have previously reported that C(arene)-F bond activation with [Ni(IMes)2] is facile at room temperature, but that the transmetalation step with B2pin2 is associated with a high energy barrier. Thus, this triplet energy transfer ultimately leads to a greatly enhanced rate constant for the transmetalation step and thus for the whole borylation process. While addition of a fluoride source such as CsF enhances the yield, it is not absolutely required. We attribute this yield-enhancing effect to (i) formation of an anionic adduct of B2pin2, i.e. FB2pin2-, as an efficient, much more nucleophilic {Bpin-} transfer reagent for the borylation/transmetalation process, and/or (ii) trapping of the Lewis acidic side product FBpin by formation of [F2Bpin]- to avoid the formation of a significant amount of NHC-FBpin and consequently of decomposition of {Ni(NHC)2} species in the reaction mixture. We reported a highly selective and general photo-induced C-Cl borylation protocol that employs [Ni(IMes)2] (IMes = 1,3-dimesitylimidazoline-2-ylidene) for the radical borylation of chloroarenes. This photo-induced system operates with visible light (400 nm) and achieves borylation of a wide range of chloroarenes with B2pin2 at room temperature in excellent yields and with high selectivity, thereby demonstrating its broad utility and functional group tolerance. Mechanistic investigations suggest that the borylation reactions proceed via a radical process. EPR studies demonstrate that [Ni(IMes)2] undergoes very fast chlorine atom abstraction from aryl chlorides to give [NiI(IMes)2Cl] and aryl radicals. Control experiments indicate that light promotes the reaction of [NiI(IMes)2Cl] with aryl chlorides generating additional aryl radicals and [NiII(IMes)2Cl2]. The aryl radicals react with an anionic sp2-sp3 diborane [B2pin2(OMe)]- formed from B2pin2 and KOMe to yield the corresponding borylation product and the [Bpin(OMe)]•- radical anion, which reduces [NiII(IMes)2Cl2] under irradiation to regenerate [NiI(IMes)2Cl] and [Ni(IMes)2] for the next catalytic cycle. A highly efficient and general protocol for traceless, directed C3-selective C-H borylation of indoles with [Ni(IMes)2] as the catalyst was achieved. Activation and borylation of N-H bonds by [Ni(IMes)2] is essential to install a Bpin moiety at the N-position as a traceless directing group, which enables the C3-selective borylation of C-H bonds. The N-Bpin group which is formed is easily converted in situ back to an N-H group by the oxidiative addition product of [Ni(IMes)2] and in situ-generated HBpin. The catalytic reactions are operationally simple, allowing borylation of of a variety of substituted indoles with B2pin2 in excellent yields and with high selectivity. The C-H borylation can be followed by Suzuki-Miyaura cross-coupling of the C-borylated indoles in an overall two-step, one-pot process providing an efficient method for synthesizing C3-functionalized heteroarenes. N2 - Es wurden effiziente und allgemeine Methoden für die selektive C-B-Verknüpfung mittels [Ni(IMes)2]-katalysierter Borylierungen von Arylfluoriden, Arylchloriden und substituierten Indolen entwickelt, welches alles leicht verfügbare Substrate sind. ... KW - Organoboron Compounds KW - N-Heterocyclic Carbene KW - Borylation KW - Photocatalysis KW - C-F KW - C-Cl KW - C-H KW - Nickel KW - Rhodium KW - Borylierung KW - Heterocyclische Carbene <-N> KW - Nickelkomplexe Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213004 ER -