TY - THES A1 - Grotemeyer, Alexander T1 - Characterisation and application of new optogenetic tools in \(Drosophila\) \(melanogaster\) T1 - Charakterisierung und Anwendung neuer optogenetischer Werkzeuge in \(Drosophila\) \(melanogaster\) N2 - Since Channelrhodopsins has been described first and introduced successfully in freely moving animals (Nagel et al., 2003 and 2005), tremendous impact has been made in this interesting field of neuroscience. Subsequently, many different optogenetic tools have been described and used to address long-lasting scientific issues. Furthermore, beside the ‘classical’ Channelrhodopsin-2 (ChR2), basically a cation-selective ion channel, also altered ChR2 descendants, anion selective channels and light-sensitive metabotropic proteins have expanded the optogenetic toolbox. However, in spite of this variety of different tools most researches still pick Channelrhodopsin-2 for their optogenetic approaches due to its well-known kinetics. In this thesis, an improved Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), is described, which might become an useful tool to provide ambitious neuroscientific approaches by dint of its characteristics. Here, ChR2XXM was chosen to investigate the functional consequences of Drosophila larvae lacking latrophilin in their chordotonal organs. Finally, the functionality of GtACR, was checked at the Drosophila NMJ. For a in-depth characterisation, electrophysiology along with behavioural setups was employed. In detail, ChR2XXM was found to have a better cellular expression pattern, high spatiotemporal precision, substantial increased light sensitivity and improved affinity to its chromophore retinal, as compared to ChR2. Employing ChR2XXM, effects of latrophilin (dCIRL) on signal transmission in the chordotonal organ could be clarified with a minimum of side effects, e.g. possible heat response of the chordotonal organ, due to high light sensitivity. Moreover, optogenetic activation of the chordotonal organ, in vivo, led to behavioural changes. Additionally, GtACR1 was found to be effective to inhibit motoneuronal excitation but is accompanied by unexpected side effects. These results demonstrate that further improvement and research of optogenetic tools is highly valuable and required to enable researchers to choose the best fitting optogenetic tool to address their scientific questions. N2 - Seit dem Channelrhodopsine das erste Mal beschrieben und erfolgreich in lebende Tiere eingebracht wurden (Nagel et al., 2003 und 2005), kam es zu einem beträchtlichen Fortschritt in diesem interessanten Gebiet der Neurowissenschaften. In der nachfolgenden Zeit wurden viele verschiedene optogenetische Werkzeuge beschrieben und zur Bearbeitung neurowissenschaftlicher Fragestellungen angewandt. Des Weiteren haben neben dem „klassischen“ Channelrhodopsin-2 (ChR2), ein im Wesentlichen Kation selektiver Kanal, auch modifizierte ChR2 Abkömmlinge, Anion selektive Kanäle und Licht sensitive metabotrope Proteine, die opotogenetische Werkzeugkiste erweitert. Dennoch greifen die meisten Wissenschaftler trotz der Vielfalt an optogenetischen Werkzeugen meist noch zu Channelrhodopsin-2, da seine Wirkungseigenschaften sehr gut erforscht sind. In der nachfolgenden Arbeit wird ein weiterentwickeltes Channelrhodopsin, Channelrhodopsin2-XXM (ChR2XXM), beschrieben. Aufgrund seiner vielfältigen Eigenschaften stellt es ein vielversprechendes Werkzeug dar, vor allem für zukünftige neurowissenschaftliche Forschungsarbeiten. Hierbei wurde ChR2XXM eingesetzt, um zu untersuchen welche Auswirkungen das Fehlen von Latrophilin im Chordotonal Organ von Drosophilalarven hat. Schließlich wurde noch die Funktionalität von GtACR an der neuromuskulären Endplatte der Drosophila überprüft. Für die umfassende Charakterisierung wurden elektrophysiologische und verhaltensbasierte Experimente an Larven durchgeführt. Es konnte gezeigt werden, dass ChR2XXM aufgrund einer erhöhten Affinität zu dem Chromophore Retinal, im Vergleich zu ChR2 ein besseres zelluläres Expressionsmuster, eine bessere zeitliche Auflösung und eine erheblich höhere Lichtsensitiviät aufweist. Durch den Einsatz von ChR2XXM konnte, aufgrund der hohen Lichtsensitiviät, mit nur minimalen Nebeneffekten, wie z.B. mögliche Wärmeaktivierung des Chordotonalorgans, der Einfluss von Latrophilin (dCIRL) auf die Signaltransmission im Chordotonalorgan, aufgeklärt werden. Ferner führte eine optogenetische, in vivo, Aktivierung des Chordotonalorgans zu Verhaltensänderungen. Zusätzlich konnte gezeigt werden, dass GtACR1 zwar effektiv motoneuronale Erregung inhibieren kann, dies aber von unerwarteten Nebeneffekten begleitet wird. Diese Ergebnisse zeigen auf, dass weitere Forschung und Verbesserungen im Bereich der optogenetischen Werkzeuge sehr wertvoll und notwendig ist, um Wissenschaftlern zu erlauben das am besten geeignetste optogenetische Werkzeug für ihre wissenschaftlichen Fragestellungen auswählen zu können. KW - Optogenetik KW - Taufliege KW - Elektrophysiologie KW - Channelrhodopsin-2 KW - optogenetics KW - Drosophila melanogaster KW - Channelrhodopsin KW - Electrophysiology Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178793 ER - TY - THES A1 - Jungbauer [geb. Ulzhöfer], Sandra Gabi T1 - Die Rolle präsynaptischer Proteine Aktiver Zonen bei konditionierten Lernprozessen T1 - The role of presynaptic active zone proteins in conditioned learning behaviour N2 - Synaptische Plastizität wird als Grundlage für Lern- und Gedächtnisprozesse in unserem Gehirn angesehen. Aktive Zonen (AZ) und ihre spezifischen Proteine modulieren diesen Prozess und bahnen essentielle Vorgänge der synaptischen Transmission. In dieser Arbeit wurden drei zentrale Proteine Aktiver Zonen - Bruchpilot, RIM (Rab3 interacting molecule) und Fife - untersucht und ihre Rolle bei konditionierten Lernprozessen in Drosophila melanogaster Larven geprüft. Hierzu wurde das etablierte Paradigma des larvalen appetitiven olfaktorischen Lernens genutzt, bei dem eine Gruppe von Larven lernt, einen Duft mit einem gustatorischen Verstärker zu koppeln. Durch die vielfältigen genetischen Manipulationsmöglichkeiten des Modellorganismus war es möglich, die Funktion der Proteine bei assoziativen Lernvorgängen selektiv zu betrachten. Bruchpilot wird für den funktionellen Aufbau Aktiver Zonen in Drosophila benötigt und ist wichtig für die Akkumulation von Calcium-Kanälen in der Nähe von AZ. Durch gentechnische Veränderungen dieses Proteins ließ sich jedoch keine Beeinträchtigung im olfaktorischen Lernverhalten von Drosophila Larven beobachten. RIM fungiert durch seine Interaktionsdomänen als Bindeglied zwischen verschiedensten Effektoren und hat Einfluss auf synaptische Plastizität. Es wurde gezeigt, dass eine Punktmutation in der C2A-Domäne von RIM beim Menschen gleichzeitig zur Retinadegeneration und zu einem gesteigert verbalen IQ (Intelligenzquotient) führt. Eine durch die hohe Homologie vergleichbare Mutation im Drosophila-Genom resultierte nicht in einem veränderten Phänotyp im olfaktorischen Lernen. Fife ist ein Protein, das für eine funktionsfähige Architektur von AZ und damit u.a. für den reibungslosen Vesikelverkehr zuständig ist. Es zeigte sich, dass dieses Protein auch synaptische Plastizität und Lernvorgänge beeinflusst. Die Ergebnisse der vorliegenden Arbeit sind ein Beitrag, um die Zusammenhänge der synaptischen Plastizität und die Funktion Aktiver Zonen Proteine besser begreifen zu können. Hervorzuheben dabei ist, dass die Bruchpilot- und RIM-Mutanten-Larven keinen veränderten Phänotyp, bzw. bei Fife nur teilweise einen eingeschränkten Phänotyp im olfaktorischen larvalen Lernen im Vergleich zu den Wildtyp-Kontrollen zeigten. Gleichwohl man früher schon signifikante strukturelle Veränderungen an Aktiven Zonen dieser Mutanten an der neuromuskulären Endplatte und auch Effekte auf das Verhalten in adulten Drosophila gefunden hat. Es wird entscheidend sein, den Zusammenhang zwischen Struktur und Funktion Aktiver Zonen Proteine weiter zu konkretisieren. N2 - Synaptic plasticity is considered to be the basis for learning and memory in our brain. Active zones (AZ) and its proteins orchestrate this process and are crucial to synaptic transmission. This work focused on three essential AZ proteins - Bruchpilot, RIM (Rab3 interacting molecule) and Fife- and their role in conditioned learning behaviour in Drosophila melanogaster larvae. To do so the well-established appetitive olfactory learning paradigm was used, in which a group of larvae is trained to learn that a specific odour is linked to a gustatory reinforcer. Due to the various genetic possibilities of Drosophila larvae it was possible to specifically study the function of each protein in associative learning behaviour. Bruchpilot is important for AZ structure in Drosophila and the accumulation of calcium channels in close proximity to active zones. Genetic manipulation of this protein did not impair olfactory learning in Drosophila larvae. Through its various interaction domains RIM connects with different molecular effectors and modulates synaptic plasticity. In Humans a point mutation in the C2A-domain of the protein leads to cone rod dystrophy and an elevated verbal IQ at the same time. A similar mutation in the Drosophila genome, thanks to the high genetic homologies, did not result in an altered phenotype. Fife is responsible for normal AZ architecture and also for efficient vesicle trafficking. It was shown that this protein modulates synaptic plasticity and learning processes. The results of this work contribute to a better understanding of synaptic plasticity and the function of active zone proteins. I would like to point out that Bruchpilot and RIM mutants did not show modified phenotypes in appetitive olfactory learning whereas Fife mutants were partially impaired in the tested paradigm compared to control groups. Although in previous works those mutants were found to cause structural changes at active zones in neuromuscular junctions and to affect learning behaviour in Drosophila adults. In future studies it will be crucial to determine the particular task and to specify the structure to function relationship of each AZ protein. KW - Plastizität KW - Aktive Zone KW - Konditioniertes Lernen KW - Drosophila melanogaster KW - Proteine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169090 ER - TY - JOUR A1 - Mrestani, Achmed A1 - Lichter, Katharina A1 - Sirén, Anna-Leena A1 - Heckmann, Manfred A1 - Paul, Mila M. A1 - Pauli, Martin T1 - Single-molecule localization microscopy of presynaptic active zones in Drosophila melanogaster after rapid cryofixation JF - International Journal of Molecular Sciences N2 - Single-molecule localization microscopy (SMLM) greatly advances structural studies of diverse biological tissues. For example, presynaptic active zone (AZ) nanotopology is resolved in increasing detail. Immunofluorescence imaging of AZ proteins usually relies on epitope preservation using aldehyde-based immunocompetent fixation. Cryofixation techniques, such as high-pressure freezing (HPF) and freeze substitution (FS), are widely used for ultrastructural studies of presynaptic architecture in electron microscopy (EM). HPF/FS demonstrated nearer-to-native preservation of AZ ultrastructure, e.g., by facilitating single filamentous structures. Here, we present a protocol combining the advantages of HPF/FS and direct stochastic optical reconstruction microscopy (dSTORM) to quantify nanotopology of the AZ scaffold protein Bruchpilot (Brp) at neuromuscular junctions (NMJs) of Drosophila melanogaster. Using this standardized model, we tested for preservation of Brp clusters in different FS protocols compared to classical aldehyde fixation. In HPF/FS samples, presynaptic boutons were structurally well preserved with ~22% smaller Brp clusters that allowed quantification of subcluster topology. In summary, we established a standardized near-to-native preparation and immunohistochemistry protocol for SMLM analyses of AZ protein clusters in a defined model synapse. Our protocol could be adapted to study protein arrangements at single-molecule resolution in other intact tissue preparations. KW - active zone KW - nanotopology KW - neuromuscular junction KW - high-pressure freezing/freeze substitution KW - PFA in ethanol KW - dSTORM KW - Drosophila melanogaster Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304904 SN - 1422-0067 VL - 24 IS - 3 ER -