TY - THES A1 - Geßner, Ralph T1 - Untersuchungen an biologischen Proben mit verschiedenen Raman- und SERS-spektroskopischen Techniken T1 - Investigations on biological samples with different Raman- and SERS spectroscopic techniques N2 - Diese Arbeit befasst sich mit der Entwicklung und Erprobung geeigneter Methoden zur Raman-spektroskopischen Untersuchung empfindlicher, insbesondere biologischer Proben. Das Ziel dabei ist, ein Werkzeug zur Verfügung zu stellen, mit dem es möglich ist, detaillierte Informationen über die Inhaltsstoffe einer Probe und deren räumlichen Verteilung zu sammeln. Diese Daten sind beispielsweise für die Qualitätssicherung pharmazeutischer Produktionen notwendig. Zu diesem Zweck wurden zwei verschiedene Ansätze verfolgt: ein Raman-Spektrometer wurde zum einen mit einer Glasfasersonde, zum anderen mit einer optischen Gradientenfalle kombiniert. Beide Ansätze wurden getestet und mit ihnen biologische Fragestellungen bearbeitet. Die Empfindlichkeit biologischer Proben und die geringe Konzentration ihrer Inhaltsstoffe macht es dabei notwendig, besonderen Wert auf probenschonende Messverfahren und eine hohe Nachweisempfindlichkeit zu legen. Die Raman- bzw. SERS-Spektroskopie ist hierzu in der Lage und erfordert gleichzeitig nur eine minimale Probenpräparation. Anhand der präsentierten Experimente konnte gezeigt werden, dass sich die SERS-Glasfasersonde besonders zur Untersuchung empfindlicher Proben eignet. Insbesondere erlaubt sie minimal-invasives Arbeiten an biologischen Materialien. Es konnte außerdem gezeigt werden, dass die Sonde aufgrund ihrer geometrischen Beschaffenheit eine gute Ortsauflösung, bis in den Sub-Mikrometerbereich, bei den Messungen erlaubt. Daher eignet sich die Fasersonde besonders zur Untersuchung von hochempfindlichen biologischen Proben bei gleichzeitig sehr geringem Probenbedarf. Mit der optischen Gradientenfalle, als zweite Methode, hat man ein Werkzeug zur Hand, mit dem es möglich ist, einzelne Mikroorganismen oder Mikropartikel in Suspension zu vermessen. Bei Arbeit mit der optischen Gradientenfalle ist eine freie, dreidimensionale Manipulation der gefangenen Zellen im Probengefäß möglich. Auf diese Weise können einzelne Zellen über längere Zeit stabil im Laserfokus gehalten werden, wodurch längere Integrationszeiten möglich werden. Außerdem kann man auf diese Weise eine Immobilisierung der suspendierten Zellen auf einer funktionalisierten Oberfläche vermeiden, wodurch unerwünschte Effekte auf das zu messende Spektrum, wie z. B. Verschiebungen einzelner Banden oder Änderungen in den relativen Bandenintensitäten, ausgeschlossen werden können. Zur Untersuchung partikulärer Verunreinigungen ist es nicht notwendig, die Lösung aus dem Gefäß heraus zu präparieren. Vielmehr können die Mikropartikel durch die optische Gradientenfalle in der Lösung festgehalten und spektroskopisch identifiziert werden. Dies ermöglicht beispielsweise die Charakterisierung von Verunreinigungen in pharmazeutischen Lösungen, ohne dass dafür Ampullen geöffnet werden müssten. Auf diese Weise können Kontaminantien identifiziert werden, ohne Gefahr zu laufen, bei der Probenpräparation weitere Verunreinigungen zu verursachen und damit die Messungen zu verfälschen. Durch die Kombination eines Raman-mikroskopischen Aufbaus mit der SERS-Glasfasersonde bzw. der optischen Gradientenfalle ist es gelungen, Fragestellungen an biologischen Systemen in sehr Proben-schonender, aber gleichzeitig hoch-ortsauflösender Weise zu bearbeiten. Durch die Verwendung nicht-kontaminierender SERS-Sonden ist es möglich, zusätzliche Verstärkungseffekte zu erzielen. Die verwendeten Anregungslaserleistungen können daher generell niedrig gehalten werden. Dennoch erhält man aussagekräftige Spektren in einer akzeptablen Zeit. Die Zwei-Laser-Lösung für die optische Gradientenfalle stellt ein zuverlässiges Werkzeug zur berührungsfreien Manipulation kleiner Partikel bei gleichzeitiger Flexibilität in Bezug auf die Anregungswellenlänge dar. N2 - This work deals with the development and evaluation of methods suitable for Raman spectroscopic investigations of sensitive samples and especially of biological samples. The aim of this work is to provide an instrument that allows the collection of detailed information on the constituents of a sample and their spatial distribution. These data are necessary e. g. to insure the quality assurance for pharmaceutical productions. For this purpose, two different approaches have been followed. One was the combination of a Raman spectrometer with a glass fiber probe, the other the combination of a Raman spectrometer with an optical gradient trap. Both strategies have been tested and applied to investigate biological problems. The sensitivity of biological samples as well as the low concentration of their constituents requires non-destructive measuring techniques as providing a high detection limit. Raman spectroscopy or SERS spectroscopy, respectively, provide these features together with the necessity for only minimal sample preparation. The presented experiments show rather convincingly that the SERS glass fiber probe is especially suitable for the investigation of sensitive samples. In particular this method allows for minimal invasive studies of biological material. Furthermore, it could be shown, that due to its geometrical properties the probe has a good spatial resolution allowing measurement down to the sub-micrometer region. Therefore, the fiber probe is especially suited for the investigation of extremely sensitive biological samples combined with only minimal amount of sample needed. The presented work nicely proofs that the optical gradient trap provides a tool enabling the measurement of single microorganism or micro particles in suspension. When working with the optical gradient trap a free three dimensional manipulation of the trapped cells inside the sample container is possible. In this manner, single cells could be held stable in the laser focus for a longer time period, allowing longer integration times. Furthermore, in this way an immobilization of the suspended cells on a functionalized surface can be avoided, whereby unwanted effects e. g. shifts of single bands or changes in relative band intensities, can be excluded. For the study of particulate contaminations it is not necessary to prepare the solution out of the container. Instead the microparticles can be hold and spectroscopically identified within the solution by the optical gradient trap. This, for example, allows the characterization of contaminations of pharmaceutical solutions without the necessity to open any phials. By doing so contaminations can be identified without risking further contaminations and therefore causing adulterated spectra. The combination of a micro Raman setup with a SERS glass fiber probe or an optical gradient trap allowed the study of biological systems in a sample sparing way and with a high spatial resolution. Additional signal enhancing effects can be achieved by using non contaminating SERS probes. Therefore, the applied excitation laser power can be kept low, although reasonable Raman spectra could be obtained for short acquisition times. The two laser solution for the optical gradient trap proved to be a reliable tool for the contact free manipulation of small particles in combination with flexibility in relation to the excitation wavelength. The application of two different lasers for trapping and Raman excitation provides a reliable tool for a contact free manipulation of small particles together with the possibility to chose the Raman excitation wavelength according to the investigated samples. KW - Biologisches Material KW - Raman-Spektroskopie KW - Oberflächenverstärkter Raman-Effekt KW - Raman KW - SERS KW - Fasersonde KW - Optische Gradientenfalle KW - Raman KW - SERS KW - fiber probe KW - optical gradient trap Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8626 ER - TY - THES A1 - Küstner, Bernd T1 - Wirkstoff-Substrat-Charakterisierung und Protein-Lokalisierung mittels Raman-Streuung T1 - Drug-Target Characterization and Protein Localization via Raman Scattering N2 - In dieser Arbeit konnte gezeigt werden, wie verschiedene Techniken zur Verstärkung der Raman-Streuung eingesetzt werden können, um selektiv und sensitiv Wirkstoffe zu charakterisieren und Proteine zu lokalisieren. Die UV-Resonanz-Raman-Spektroskopie wurde zur selektiven Verfolgung der Wirkstoff-Substrat-Wechselwirkung zwischen einem Guanidiniocarbonyl-basierten Peptidrezeptor und seinem Substrat eingesetzt. Durch die enorme Resonanzverstärkung der Ramanstreuung konnten in einer Bindungsstudie die spektralen Änderung bei der Komplexierung des Rezeptors mit einem Tetrapeptid bei submillimolarer Konzentration in Wasser verfolgt werden. Die oberflächenverstärkte Raman-Streuung (surface-enhanced Raman scattering, SERS) wurde zur ultrasensitiven Detektion von festphasengebundenen Substanzen eingesetzt. Die selektive Verstärkung der auf dem Harz gebundenen Substanz wurde durch aggregierte Silber-Nanopartikeln auf der Oberfläche der Harzkügelchen ermöglicht. So konnte auf einem einzigen Harzkügelchen in wenigen Sekunden das SERS-Spektrum einer Substanzmenge von nur 50 fmol aufgenommen werden. In einem SERS-mikroskopischen Raster-Experiment an der Oberfläche eines einzelnen Harzpartikels konnte die hohe Reproduzierbarkeit dieser Technik demonstriert werden. Zwei neue SERS-Marker zur Detektion von Biomolekülen werden abschließend vorgestellt. Bei beiden Marker-Typen werden die Raman-Signale von selbstorganisierenden Monolagen (self-assembled monolayer, SAM) aus Raman-Markern durch Gold/Silber-Nanoschalen als SERS-Substrat verstärkt. Der erste neue SERS-Marker-Typ wurde mit einer SAM aus Raman-Markern mit zwei unterschiedlich langen hydrophilen Abstandshalter-Gruppen synthetisiert. Über das Verhältnis von kurzem zu langem Abstandshalter kann die sterische Hinderung der Bindungsstellen in der SAM zur kontrollierten Konjugation an Antikörper minimiert werden. Der zweite SERS-Marker-Typ beruht auf der Silicaverkapselung einer SAM auf den Gold/Silber-Nanoschalen. Die silicaverkapselten SERS-Marker konnten nach der Oberflächenfunktionalisierung mit Amino-Gruppen über heterobifunktionelle Verknüpfungsreagenzien an Antikörper gekoppelt werden. Beide SERS-Marker wurden zur immunhistochemischen Lokalisierung des prostataspezifischen Antigens in Prostatagewebeschnitten eingesetzt. N2 - Different Raman techniques have been employed for the selective and sensitive characterization of drug-substrate interactions and for the selective localization of proteins. UV resonance Raman spectroscopy was used to monitor selectively the drug-target interaction between a guanidiniocarbonyl-based peptide receptor and its substrate. Due to the enormous resonance enhancement of the Raman scattering the spectral changes upon complexation of the receptor with a tetrapeptide could be characterized in a binding study at a submillimolar concentration in water. Surface-enhanced Raman scattering (SERS) was employed for the ultra-sensitive detection of solid-phase bound substances. The selective enhancement of the solid-phase bound substance was realized with help of aggregated silver nanoparticles on the surface of the solid support. It was possible to detect a total amount of only approx. 50 fmole of the substance on a single resin bead. The high reproducibility of this technique was demonstrated in a SERS mapping experiment. Two approaches to new SERS labels for the detection of biomolecules are presented. In both types of labels the signal is generated from self-assembled monolayers (SAM) of Raman labels on gold/silver nanoshells as the SERS substrate. The first new type of SERS labels was synthesized with a SAM of Raman labels containing hydrophilic spacer groups with different lengths. The stoichiometric ratio between the short and the long spacer allows a minimization of the sterical hinderance of the reactive groups in the SAM for a controlled conjugation to antibodies. The second type of SERS labels includes the silica-encapsulation of a SAM on gold/silver nanoshells. The surface of the silica-encapsulated SERS labels were aminofunctionalized and conjugated to antibodies via heterobifunctional crosslinkers. With both types of SERS labels the prostate-specific antigen as a target protein was localized in prostate tissue sections. KW - Raman-Effekt KW - Resonanz-Raman-Effekt KW - Oberflächenverstärkter Raman-Effekt KW - Kolloidchemie KW - Wirkstoff KW - Substrat KW - Bio-Nano-Technologie KW - Raman Scattering KW - Resonance Raman Effect KW - Surface Enhanced Raman Scattering KW - Colloid Chemistry KW - Bio Nano Technology Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40845 ER - TY - THES A1 - Pavel, Ioana-Emilia T1 - Vibrational spectroscopy and density functional theory calculations, a powerful approach for the characterization of pharmaceuticals and new organometallic complexes T1 - Schwingungsspektroskopie und Dichtefunktionaltheorie-Rechnungen, ein vielversprechender Ansatz zur Charakterisierung von Pharmazeutika und neuer metallorganischer Komplexe. N2 - In the current work, several well-known pharmaceuticals (1,4-dihydrazinophthalazine sulfate, caffeine, and papaverine hydrochloride) and new organometallic compounds (nickel(II) cupferronato complexes NiL2An, L = PhN2O2-, n = 1, A = o-phenanthroline (1), o,o’-bipyridine (2) and n = 2, A = H2O (3), o-NH2Py (4), o-C6H4(NH2)2 (5); silylene-bridged dinuclear iron complexes [Cp(OC)2Fe]2SiX2 (X = H (6), F (7), Cl (8), Br (9), I (10)); 3-silaoxetane 3,3-dimethyl-2,2,4,4-tetraphenyl-1-oxa-3-silacyclobutane (11) and 3-silathietane 3,3-dimethyl-2,2,4,4-tetraphenyl-1-sila-3-thiacyclobutane (12) compounds), which have successfully been characterized by using vibrational spectroscopy in conjunction with accurate density functional theory (DFT) calculations, are presented. The DFT computed molecular geometries of the species of interest reproduced the crystal structure data very well and in conjunction with IR and Raman measurements helped us to clarify the structures of the compounds, for which no experimental data were available; and this, especially for the new organometallic compounds, where the X-Ray analysis was limited by the non-availability of single crystals (3, 5, 10). Furthermore, a natural population analysis (NPA) and natural bond orbital (NBO) calculations together with a detailed analysis of the IR and Raman experimental as well as calculated spectra of the new organometallic compounds, allowed us to study some special bonding situations (1-12) or to monitor the structural changes observed with the change in temperature during the Raman experiments (11, 12). By combining these two methods (DFT and vibrational spectroscopy), the auspicious results obtained on the organometallic compounds 6-12 and overall in literature, made us confident of the power of theoretical calculations in aiding the interpretation of rich SERS spectra by solving some interesting issues. Consequently, the Raman and SERS spectra of well-known pharmaceuticals (1,4-dihydrazinophthalazine sulfate, caffeine, and papaverine hydrochloride) or new potentially biological active organometallic complexes (1-5), that were synthetized by our coworkers, were discussed with the assistance of the accurate results obtained from DFT calculations (structural parameters, harmonic vibrational wavenumbers, Raman scattering activities), and many previous incomplete assignments have been analyzed and improved. This allowed us to establish the vibrational behavior of these biological compounds near a biological artificial model at different pH values or concentrations (Ag substrate), taking into account that information about the species present under particular conditions could be of great importance for the interpretation of biochemical processes. The total electron density of molecules and the partial charges situated on selected atoms, which were determined theoretically by NPA, allowed us to establish the probability of different atoms acting as an adsorptive site for the metal surface. Moreover, a closer examination of the calculated orbitals of molecules brought further arguments on the presence or absence of the photoproducts at the Ag surface during the irradiation (1,4-dihydrazinophthalazine sulfate). Overall, the results provide a benchmark illustration of the virtues of DFT in aiding the interpretation of rich vibrational spectra attainable for larger polyatomic adsorbates by using SERS, as well as in furnishing detailed insight into the relation between the vibrational properties and the nature of the Ag substrate-adsorbate bonding. Therefore, we strongly believe that theoretical calculations will become a matter of rapidly growing scientific and practical interest in SERS. N2 - In der vorliegenden Arbeit werden allgemein bekannte Pharmazeutika (1,4-Dihydrazin-phtalazinsulfat, Koffein und Papaverinhydrochlorid) und mehrere neue metallorganische Verbindungen (Nickel(II)-Kupferron-Komplexe NiL2An, L = PhN2O2-, n = 1, A = o-phenanthrolin (1), o,o’-bipyridine (2) and n = 2, A = H2O (3), o-NH2Py (4), o-C6H4(NH2)2 (5); Silicium-verbrückte dinucleare Eisen-Komplexe [Cp(OC)2Fe]2SiX2 (X = H (6), F (7), Cl (8), Br (9), I (10)); 3-Silaoxetan 3,3-Dimethyl-2,2,4,4-tetraphenyl-1-oxa-3-silacyclobutan (11) und 3-Silathietan 3,3-Dimethyl-2,2,4,4-tetraphenyl-1-sila-thiacyclobutan (12) Verbindungen) vorgestellt, die erfolgreich unter Verwendung schwingungsspektroskopischer Methoden in Verbindung mit genauen DFT Rechnungen charakterisiert worden sind. Die mittels DFT berechneten Molekülgeometrien der uns interessierenden Substanzen gaben die Daten, die aus Kristallstrukturanalyse erhalten worden sind, sehr gut wieder und halfen uns zusammen mit IR- und Raman-Messungen die Strukturen der Verbindungen aufzuklären, für die bisher keine experimentellen Daten erhältlich waren. Besondere Aufmerksamkeit wurde denjenigen neuen Metallorganika geschenkt, deren Röntgenstrukturanalyse (3, 5, 10) auf Grund der Fehlens von Einkristallen eingeschränkt war. Desweiteren erlaubten uns “natural population analysis” (NPA)- und ” natural bond orbital“ (NBO)-Analysen, ebenso wie detallierte Auswertungen der experimentellen und berechneten Spektren (IR, Raman) der metallorganischen Verbindungen, die Untersuchung spezieller Bindungssituationen (1-12) und die strukturellen Änderungen (11, 12) zu verfolgen, die mit der Variation der Temperatur während der Raman-Messungen einhergehen. Die vielversprechenden Ergebnisse der Untersuchungen an metallorganischen Verbindungen 6-12 sowie entsprechende bisher publizierte Ergebnisse, die durch Kombination dieser zwei Methoden (DFT und Schwingungsspektroskopie) erhalten worden sind, machten uns zuversichtlich, dass theoretische Berechnungen bei der Auswertung auch komplexer SERS-Spektren durch Lösung einiger interessanter Probleme sehr behilflich sein könnten. Folglich konnten die Raman- und SERS-Spektren von bekannten Pharmazeutika (1,4-Dihydrazin-phtalazinsulfat, Koffein und Papaverinhydrochlorid) oder von neuen, potentiell biologisch aktiven Organometall-Komplexen (1-5), die von Mitarbeitern anderer Institute synthetisiert worden sind, unter Zuhilfenahme genauer Ergebnisse aus DFT-Rechnungen (strukturelle Parameter, harmonische Schwingungswellenzahlen, Raman-Streuaktivitäten) interpretiert werden. So war es möglich, viele bisher unvollständig zugeordnete Schwingungen zuzuordnen und zu erklären. Dies erlaubte uns, das Schwingungsverhalten dieser biologischen Substanzen innerhalb eines künstlichen biologischen Modells (Ag-Substrat) bei verschiedenen pH-Werten und Konzentrationen zu ermitteln. Informationen über das Verhalten solcher Verbindungen unter besonderen Bedingungen könnten bei der Interpretation biologischer Prozesse eine wichtige Rolle spielen. Die totale Elektronendichte dieser Moleküle und die Partialladung an unterschiedlichen Atomen, die durch NPA bestimmt wurden, ermöglichten uns, die Adsorptionswahrscheinlichkeit verschiedener Atome an bestimmten Stellen der Metalloberfläche zu ermitteln. Ferner lieferte eine genauere Betrachtung der berechneten Molekülorbitale weitere Hinweise auf das Auftreten oder Fehlen von Photoprodukten auf der Silberoberfläche während der Bestrahlung (1,4-Dihydrazin-phtalazinsulfat). Zusammenfassend zeigen die Ergebnisse die Vorteile von DFT-Rechnungen bei der Interpretation komplexer Schwingungsspektren größerer polyatomarer Adsorbate auf, die nur unter Ausnützung des SERS-Effekts aufgenommen werden können. Auch tragen sie dazu bei, einen detaillierten Einblick in den Zusammenhang zwischen den Schwingungseigenschaften und der Natur der Silbersubstratadsorbat-Bindung zu liefern. Demzufolge sind wir davon überzeugt, dass theoretische Methoden einen größeren Stellenwert bei einem schnell wachsenden wissenschaftlichen und praktischen Interesse an SERS gewinnen werden. KW - Arzneimittel KW - Oberflächenverstärkter Raman-Effekt KW - Dichtefunktionsformalismus KW - Infrarot- und Raman-Spektroskopie KW - SERS KW - DFT KW - Pharmazeutika KW - neue metallorganische Komplexe KW - Infrared and Raman spectroscopy KW - SERS KW - DFT KW - pharmaceuticals KW - new organometallic complexes Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7186 ER - TY - THES A1 - Rösch, Petra T1 - Raman-spektroskopische Untersuchungen an Pflanzen und Mikroorganismen T1 - Raman spectroscopic investigations on plants and microorganisms N2 - In dieser Arbeit werden Pflanzen, Pflanzengewebe, Pflanzenzellen und Mikro-organismen spektroskopisch untersucht und ihre Inhaltsstoffe unter minimaler Probenpräparation im biologischen Gewebe direkt lokalisiert und identifiziert. Unter den verfügbaren Schwingungs-spektroskopischen Methoden ist die Mikro-Raman-Spektroskopie für diese Fragestellungen besonders gut geeignet, da Wasser Raman-Spektren nur wenig beeinflusst. Daher kann mit Raman-spektroskopischen Methoden auch in stark wasserhaltigem Gewebe gemessen werden. Weiterhin erhält man mit der Mikro-Raman-Spektroskopie eine gute räumliche Auflösung im sub-µm-Bereich, wodurch es möglich ist, heterogene Proben zu untersuchen. Darüber hinaus kann die Mikro-Raman-Spektroskopie mit anderen Methoden, wie z. B. der oberflächenverstärkten Raman-Spektroskopie (SERS), kombiniert werden. In pflanzlichen Zellen liegt eine Vielzahl von Substanzen in geringen Konzentrationen vor. Aufgrund der niedrigen Quantenausbeute des Raman-Effekts treten vor allem Substanzen, die eine Resonanz-Verstärkung erfahren, in den Spektren hervor. Diese Substanzen, wie z. B. b-Carotin, können deshalb in geringen Konzentrationen detektiert werden. Der Schwerpunkt dieser Arbeit liegt in der Untersuchung von Sekundär-Metaboliten wie Alkaloiden, Lipiden oder Terpenen, die in der Pflanze agglomerieren. Neben der Identifikation von Inhaltsstoffen, können die Raman-Spektren von Pflanzen für die chemotaxonomische Klassifizierung mit Hilfe der hierarchischen Clusteranalyse verwendet werden. Die Identifizierung von Mikroorganismen auch in sehr geringen Mengen (Monolage, einzelne Zellen) ist mit der Mikro-Raman-Spektroskopie nur unter bestimmten Voraussetzungen durchführbar. Für weitergehende Untersuchungen wird hier die SERS-Sonde oder ein TERS-Aufbau verwendet werden. N2 - This thesis concentrates on the spectroscopic investigation of plants, plant tissue, plant cells as well as microorganisms. The characteristic components of the biological cells have been localized and identified directly in the biological tissue with minimal sample preparation only. Among the different vibrational spectroscopic methods micro Raman spectroscopy appears to be the most suitable technique for such scientific investigations. For example, water which shows sharp absorptions in the infrared is only a weak Raman scatterer. Thus biological tissues containing a high amount of water can be easily studied with Raman spectroscopy. Due to the use of laser light for the excitation of Raman scattering sub-µm spatial resolution can be realized by micro Raman spectroscopy. This allows the investigation of very heterogeneous samples. Furthermore, micro Raman spectroscopy can be combined with other methods such as surface enhanced Raman spectroscopy (SERS). Plant cells consist of a great variety of substances at low concentrations. As the Raman effect has a poor quantum yield mostly resonance enhanced substances can be identified in the resulting spectra. These substances like e. g. b-carotene can be detected down to very low concentrations. The main focus lies on the investigation of secondary metabolites such as alkaloids, lipids or terpenes, which agglomerate in the plant. Besides the identification of plant components, Raman spectra allow the chemotaxonomic classification of plants when combined with a hierarchical cluster analysis. The identification of microorganisms in low amounts (monolayers, single cells) could only be achieved with Raman spectroscopy when certain conditions are met. Further investigations should focus on the SERS probe or the TERS setup. KW - Pflanzen KW - Raman-Spektroskopie KW - Mikroorganismus KW - Oberflächenverstärkter Raman-Effekt KW - Sekundärmetabolit KW - Mikro-Raman-Spektroskopie KW - SERS KW - Lipide KW - ätherische Öle KW - Clusteranalyse KW - Microorganismen KW - micro Raman spectroscopy KW - SERS KW - lipids KW - essential oils KW - cluster analysis KW - microorganisms Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3539 ER - TY - THES A1 - Szeghalmi, Adriana Viorica T1 - The ground and excited state molecular structure of model systems undergoing photochemical processes and the characterization of active agents by means of vibrational spectroscopy and theoretical calculations T1 - Die Molekularstruktur des Grund- und angeregten Zustandes von Modelsystemen bei Photochemischen Prozessen und die Charakterisierung von Wirkstoffen mittels Schwingungsspektroskopie und Theoretische Rechnungen N2 - The present thesis reports about vibrational and quantum chemical investigations on model systems undergoing photochemical processes and pharmaceutically active compounds, respectively. Infrared (IR) and Raman spectroscopy were applied for the characterization of the ground state molecular structure. Moreover, resonance Raman (RR) spectra contain additional information about the resonantly enhanced excited state molecular structure. A quantitative resonance Raman intensity analysis in conjunction with the simultaneous simulation of the absorption spectra by means of time-dependent propagation methods was accomplished in order to extract valuable information about the excited state molecular structures of the investigated systems. Surface enhanced Raman scattering (SERS) allows one to determine the interaction and adsorption site of active agents on a metal substrate. Furthermore, density functional theory (DFT) and potential energy distribution (PED) calculations were carried out for an exact assignment of the vibrational spectra. Complete active space self consistent field (CASSCF) and configuration interaction (CI) calculations for some model systems were also performed to assess the experimental results on the excited state potential surfaces. The fundamentals of resonance Raman spectroscopy are treated in detail, describing the physical processes and emphasizing the theoretical methodologies which allow one to obtain the information about the resonantly excited state via an RR intensity analysis. The Brownian oscillator model to determine the solvent reorganization energy is briefly presented. Furthermore, the SERS enhancement mechanisms and selection rules to determine the orientation of the molecules adsorbed on the metal substrate are discussed. The Hartree-Fock approach to calculate the ground state geometry is expatiated, and the basic characteristics of the CI and CASSCF calculations are specified. The chapter ends with a short description of the DFT calculations. Chapter 4 deals with the investigation of the excited state intramolecular proton transfer of the model system, 1-hydroxy-2-acetonaphthone (HAN). The vibrations showing the highest displacement parameters correspond to stretching and in-plane deformation modes of the naphthalene ring and the conjugated carbonyl group, while the OH stretching mode exhibits no observable enhancement. The cooperative effect of the skeletal vibrations reduces the distance between the carbonyl and hydroxyl oxygen atoms in accordance with a general electron density redistribution. Hence, the leading force in the proton transfer process is the increase in electron density on the carbonyl group and the decrease of the negative charge on the hydroxyl oxygen. In chapter 5 the structural and vibrational characteristics of the organic mixed valence system N,N,N’,N’-tetraphenylphenylenediamine radical cation (1+) are discussed. The resonance Raman measurements showed that at least eight vibrational modes are strongly coupled to the optical charge transfer process in (1+). These Franck-Condon active modes were assigned to symmetric vibrations. The most enhanced band corresponds to the symmetric stretching mode along the N-phenylene-N unit and exhibits the largest vibrational reorganization energy. Nevertheless, symmetric stretching modes of the phenylene and phenyl units as well as deformation modes are also coupled to the electronic process. The total vibrational reorganization energy of these symmetrical modes is dominant, while the solvent induced broadening and reorganization energy are found to be small. Hence, (1+) adopts a symmetrical delocalized Robin-Day Class III structure in the ground state. Chapter 6 reports about a vibrational spectroscopic investigation of a model organic photorefractive thiophene derivative, 2-(N,N-diethylamino)-5-(2’,2’-dicyanovinyl)-thiophene. The geometry of the first excited state were optimized and the FC parameters were calculated using the configuration interaction with single excitations method. These calculations show that the contribution of the zwitterionic structure to the excited state is significantly higher than in the ground state. The resonance Raman spectra indicate that several stretching modes along the bonds connecting the donor and acceptor moieties as well as the S-C stretching vibrations are enhanced. Chapter 7 presents the vibrational analysis of an aziridinyl tripeptide, a cysteine protease inhibitor active drug. The vibrational analysis reveals stronger H-bonding of the aziridine NH unit in the solid state of the aziridinyl tripeptide than in the liquid electrophilic building block, indicating medium strong intermolecular H-bond interactions in the crystal unit. The amide hydrogen atoms of the aziridinyl tripeptide are involved in weaker H-bonds than in an epoxide analogon. Furthermore, the characteristic vibrational modes of the peptide backbone were discussed. Chapter 8 reports on the adsorption mechanism of two related anti-leukemia active agents, 6-mercaptopurine (6MP) and 6-mercaptopurine-ribose (6MPR) on a silver colloid. Both molecules adsorb through the N1 and possibly S atom on the metal surface under basic conditions. The SERS spectra recorded for acidic pH values showed that the ribose derivative exhibits a different adsorption behavior compared to the free base. 6MP probably adsorbs on the silver sol through the N9 and N3 atoms, while 6MPR interacts with the surface via the N7 and probably S atoms. Around critical biological concentrations and pH values i.e. at low concentrations and almost neutral condition (pH 7-9), 6MPR interacts with the substrate through both N7 and N1 atoms, possibly forming two differently adsorbed species, while for 6MP only the species adsorbed via N1 was evidenced. N2 - In der vorliegenden Arbeit wurden schwingungsspektroskopische und quanten-chemische Untersuchungen an unterschiedlichen Modellsystemen, die an photochemischen Prozessen beteiligt sind, und an verschiedenen Pharmazeutika durchgeführt. Die Methoden der Infrarot- (IR) und Raman-Spektroskopie wurden für die Charakterisierung der Grund-zustandsgeometrie verwendet. Darüber hinaus konnten aus Resonanz-Raman- (RR) Spektren zusätzliche Informationen über den elektronisch angeregten Zustand erhalten werden. Diese aufschlussreichen Aussagen über die elektronisch angeregten Zustände der untersuchten Systeme wurden durch die simultane quantitative Analyse der Resonanz-Raman-Spektren und des Absorptionsspektrums gewonnen. Die Anregungsprofile für die Resonanz-Raman-Streuung und die Absorptionsquerschnitte wurden mittels zeitabhängiger Propagationsmethoden berechnet. Oberflächen-verstärkte Raman-Streu- (SERS) Experimente ermöglichten die Charakterisierung der Wechselwirkungen und Adsorptionsbindungsstellen von Wirkstoffen an Metalloberflächen. Des Weiteren wurden Dichtefunktionaltheorie- (DFT) und PED-Rechnungen durchgeführt, um eine genaue Zuordnung der Schwingungsspektren zu gestatten. CASSCF- und CI-Rechnungen wurden in einzelnen Fällen durchgeführt, um sie mit den experimentellen Ergebnissen für die Potenzialhyperfläche des angeregten Zustands vergleichen zu können. Die Grundlagen der Resonanz-Raman-Spekroskopie wurden ausführlich diskutiert. Dabei wurden die physikalischen Prozesse beschrieben und die mathematischen Techniken, die die Bestimmung der Parameter des angeregten Zustands durch die RR-Intensitätsanalyse ermöglichen, hervorgehoben. Das Modell des Brownian-Oszillators für die Ermittlung der Lösungsmittel-Reorganisations-energie wurde kurz beschrieben. Weiterhin wurden die SERS Verstärkungsmechanismen und Auswahlregeln diskutiert. Der Hartree-Fock-Ansatz zur Berechnung des Grundzustandes sowie die CI- und CASSCF-Methoden wurde erläutert. Das Kapitel endete mit einer kurzen Beschreibung der Grundlagen von DFT-Rechnungen. Im vierten Kapitel wurden die Untersuchungen an einem Modell-Systems (1-hydroxy-2-acetonaphthone HAN), das einen Protonentransferprozess im angeregten Zustand zeigt, dargestellt. Die Streck- und Deformationsmoden des Naphthalinrings und der konjugierten Carbonylgruppe weisen die größten Displacement-Parameter auf, während die O-H-Streckschwingung keine Resonanz-Verstärkung erfährt. Diese Gerüst-schwingungsmoden verringern den Abstand zwischen den Carbonyl- und Hydroxyl-Sauerstoffatomen, was mit einer generellen Umverteilung der Elektronendichte einhergeht. Daher wird der Protonentransferprozess durch die Zunahme der Elektronendichte auf dem Carbonylsauerstoffatom und der gleichzeitigen Abnahme der negativen Ladung auf dem Hydroxylsauerstoffatom gesteuert. Im fünften Kapitel wurden die strukturellen und vibronischen Eigenschaften eines organischen gemischtvalenten Systems, des N,N,N’,N’-tetraphenylphenylenediamine Radikalkations (1+), untersucht. Die Resonanz-Raman-Experimente zeigten, dass mindestens acht Schwingungsmoden stark an den optischen Ladungstransferprozess gekoppelt sind. Diese Franck-Condon aktiven Moden wurden vornehmlich symmetrischen Moden zugeordnet. Die am meisten verstärkte Mode entspricht der symmetrischen Streckschwingung entlang der N-Ar-N-Achse. Jedoch sind auch symmetrische Streckschwingungsmoden der Phenyl- und Phyenylen-Gruppen und Deformationsmoden an dem elektronischen Prozess beteiligt. Der Beitrag dieser symmetrischen Moden zur Reorganisationsenergie dominiert, während die Lösungsmittelreorganisationsenergie nur sehr gering ist. Die erhaltenen Ergebnisse beweisen, dass es sich hier um ein symmetrisches delokalisiertes Robin-Day-Class-III-System handelt. Das sechste Kapitel beschäftigt sich mit einer schwingungsspektroskopischen Analyse eines photorefraktiven Thiophen-Derivat-Modellsystems, 2-(N,N-diethylamino)-5(2’,2’-dicyanovinyl)-thiophen. Die Geometrien des Grund- und ersten angeregten Zustands wurden optimiert und die FC Parameter unter Anwendung der CIS Methode berechnet. Diese Rechnungen ergaben, dass der Anteil der zwitterionischen Struktur im angeregten Zustand dominiert. Die Resonanz-Raman-Spektren zeigten, dass mehrere Streckschwingungsmoden entlang der Bindungen, die die Donor- und Akzeptor-Einheiten verknüpfen, und die S-C Streckschwingungsmoden verstärkt wurden. Das siebte Kapitel behandelt die Analyse eines Aziridinyl-Tripeptids, ein Wirkstoff gegen Cystein-Proteasen. Die Schwingungsanalyse ergab eine stärkere Wasserstoffbrückenbindung der Aziridin NH-Gruppe des Aziridinyl-Tripeptids im festen Zustand als in der flüssigen Baueinheit. Die Wasserstoffatome der Amidgruppen des Tripeptids sind an schwächeren Wasserstoffbrückenbindungen als die des Epoxid-Analogons beteiligt. Darüber hinaus wurden die charakteristischen Gerüstschwingungsmoden des Tripeptids diskutiert. Im vorletzten Kapitel wurde der Adsorptionsmechanismus von zwei Anti-Leukämie-Wirkstoffen, 6-Mercaptopurin (6MP) und 6-Mercaptopurin-ribose (6MPR) diskutiert. Unter basischen Bedingungen adsorbieren beide Moleküle über die N1- und S-Atome an der Metalloberfläche. Für biologisch kritischen Konzentrationen und pH-Werten, d.h. für nahezu neutrale Bedingungen (pH-Wert 7-9) und eine geringe Konzentration, wurde festgestellt, dass das 6MPR-Molekül mit dem Substrat sowohl über das N7- als auch N1-Atom wechselwirkt, wobei wahrscheinlich zwei unterschiedlich adsorbierte Spezies vorhanden sind. Im Gegensatz dazu weist das 6MP-Molekül nur eine über das N1-Atom adsorbierte Spezies auf. KW - Photochemie KW - Molekülstruktur KW - Grundzustand KW - Raman-Spektroskopie KW - Angeregter Zustand KW - Resonanz-Raman-Effekt KW - Oberflächenverstärkter Raman-Effekt KW - Dichtefunktionalformalismus KW - Ab-initio-Rechnung KW - Resonanz-Raman KW - Oberflächen-verstärkte Raman Streuung (SERS) KW - DFT- und ab-initio-Rechnungen KW - photochemische Prozesse KW - Wirkstoffe KW - Resonance Raman KW - Surface enhance Raman scattering (SERS) KW - DFT and ab-initio calculations KW - photochemical processes KW - active agents Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11961 ER -